Rule Extraction from Support Vector Machines

Rule Extraction from Support Vector Machines
Title Rule Extraction from Support Vector Machines PDF eBook
Author Joachim Diederich
Publisher Springer
Pages 267
Release 2007-12-27
Genre Technology & Engineering
ISBN 3540753907

Download Rule Extraction from Support Vector Machines Book in PDF, Epub and Kindle

Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost – an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.

Rule Extraction from Support Vector Machines

Rule Extraction from Support Vector Machines
Title Rule Extraction from Support Vector Machines PDF eBook
Author Joachim Diederich
Publisher Springer Science & Business Media
Pages 267
Release 2008-01-04
Genre Mathematics
ISBN 3540753893

Download Rule Extraction from Support Vector Machines Book in PDF, Epub and Kindle

Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost – an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.

Soft Computing for Knowledge Discovery and Data Mining

Soft Computing for Knowledge Discovery and Data Mining
Title Soft Computing for Knowledge Discovery and Data Mining PDF eBook
Author Oded Maimon
Publisher Springer Science & Business Media
Pages 431
Release 2007-10-25
Genre Computers
ISBN 038769935X

Download Soft Computing for Knowledge Discovery and Data Mining Book in PDF, Epub and Kindle

Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.

Support Vector Machines

Support Vector Machines
Title Support Vector Machines PDF eBook
Author Naiyang Deng
Publisher CRC Press
Pages 345
Release 2012-12-17
Genre Business & Economics
ISBN 1439857938

Download Support Vector Machines Book in PDF, Epub and Kindle

Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which

Rule Extraction from Support Vector Machine

Rule Extraction from Support Vector Machine
Title Rule Extraction from Support Vector Machine PDF eBook
Author Mohammed Farquad
Publisher GRIN Verlag
Pages 260
Release 2012-05-10
Genre Computers
ISBN 3656188084

Download Rule Extraction from Support Vector Machine Book in PDF, Epub and Kindle

Doctoral Thesis / Dissertation from the year 2010 in the subject Computer Science - Applied, grade: none, , course: Department of Computers and Information Sciences - Ph.D., language: English, abstract: Although Support Vector Machines have been used to develop highly accurate classification and regression models in various real-world problem domains, the most significant barrier is that SVM generates black box model that is difficult to understand. The procedure to convert these opaque models into transparent models is called rule extraction. This thesis investigates the task of extracting comprehensible models from trained SVMs, thereby alleviating this limitation. The primary contribution of the thesis is the proposal of various algorithms to overcome the significant limitations of SVM by taking a novel approach to the task of extracting comprehensible models. The basic contribution of the thesis are systematic review of literature on rule extraction from SVM, identifying gaps in the literature and proposing novel approaches for addressing the gaps. The contributions are grouped under three classes, decompositional, pedagogical and eclectic/hybrid approaches. Decompositional approach is closely intertwined with the internal workings of the SVM. Pedagogical approach uses SVM as an oracle to re-label training examples as well as artificially generated examples. In the eclectic/hybrid approach, a combination of these two methods is adopted. The thesis addresses various problems from the finance domain such as bankruptcy prediction in banks/firms, churn prediction in analytical CRM and Insurance fraud detection. Apart from this various benchmark datasets such as iris, wine and WBC for classification problems and auto MPG, body fat, Boston housing, forest fires and pollution for regression problems are also tested using the proposed appraoch. In addition, rule extraction from unbalanced datasets as well as from active learning based approaches has been explored. For classification problems, various rule extraction methods such as FRBS, DT, ANFIS, CART and NBTree have been utilized. Additionally for regression problems, rule extraction methods such as ANFIS, DENFIS and CART have also been employed. Results are analyzed using accuracy, sensitivity, specificity, fidelity, AUC and t-test measures. Proposed approaches demonstrate their viability in extracting accurate, effective and comprehensible rule sets in various benchmark and real world problem domains across classification and regression problems. Future directions have been indicated to extend the approaches to newer variations of SVM as well as to other problem domains.

Support Vector Machines

Support Vector Machines
Title Support Vector Machines PDF eBook
Author Ingo Steinwart
Publisher Springer Science & Business Media
Pages 611
Release 2008-09-15
Genre Computers
ISBN 0387772421

Download Support Vector Machines Book in PDF, Epub and Kindle

Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbookwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others.

Deterministic and Statistical Methods in Machine Learning

Deterministic and Statistical Methods in Machine Learning
Title Deterministic and Statistical Methods in Machine Learning PDF eBook
Author Joab Winkler
Publisher Springer
Pages 347
Release 2005-10-17
Genre Computers
ISBN 3540317287

Download Deterministic and Statistical Methods in Machine Learning Book in PDF, Epub and Kindle

This book consitutes the refereed proceedings of the First International Workshop on Machine Learning held in Sheffield, UK, in September 2004. The 19 revised full papers presented were carefully reviewed and selected for inclusion in the book. They address all current issues in the rapidly maturing field of machine learning that aims to provide practical methods for data discovery, categorisation and modelling. The particular focus of the workshop was advanced research methods in machine learning and statistical signal processing.