Rule-Based Evolutionary Online Learning Systems

Rule-Based Evolutionary Online Learning Systems
Title Rule-Based Evolutionary Online Learning Systems PDF eBook
Author Martin V. Butz
Publisher Springer
Pages 279
Release 2006-01-04
Genre Computers
ISBN 3540312315

Download Rule-Based Evolutionary Online Learning Systems Book in PDF, Epub and Kindle

Rule-basedevolutionaryonlinelearningsystems,oftenreferredtoasMichig- style learning classi?er systems (LCSs), were proposed nearly thirty years ago (Holland, 1976; Holland, 1977) originally calling them cognitive systems. LCSs combine the strength of reinforcement learning with the generali- tion capabilities of genetic algorithms promising a ?exible, online general- ing, solely reinforcement dependent learning system. However, despite several initial successful applications of LCSs and their interesting relations with a- mal learning and cognition, understanding of the systems remained somewhat obscured. Questions concerning learning complexity or convergence remained unanswered. Performance in di?erent problem types, problem structures, c- ceptspaces,andhypothesisspacesstayednearlyunpredictable. Thisbookhas the following three major objectives: (1) to establish a facetwise theory - proachforLCSsthatpromotessystemanalysis,understanding,anddesign;(2) to analyze, evaluate, and enhance the XCS classi?er system (Wilson, 1995) by the means of the facetwise approach establishing a fundamental XCS learning theory; (3) to identify both the major advantages of an LCS-based learning approach as well as the most promising potential application areas. Achieving these three objectives leads to a rigorous understanding of LCS functioning that enables the successful application of LCSs to diverse problem types and problem domains. The quantitative analysis of XCS shows that the inter- tive, evolutionary-based online learning mechanism works machine learning competitively yielding a low-order polynomial learning complexity. Moreover, the facetwise analysis approach facilitates the successful design of more - vanced LCSs including Holland’s originally envisioned cognitive systems. Martin V.

Learning Classifier Systems

Learning Classifier Systems
Title Learning Classifier Systems PDF eBook
Author Tim Kovacs
Publisher Springer
Pages 356
Release 2007-06-11
Genre Computers
ISBN 3540712313

Download Learning Classifier Systems Book in PDF, Epub and Kindle

This book constitutes the thoroughly refereed joint post-proceedings of three consecutive International Workshops on Learning Classifier Systems that took place in Chicago, IL in July 2003, in Seattle, WA in June 2004, and in Washington, DC in June 2005. Topics in the 22 revised full papers range from theoretical analysis of mechanisms to practical consideration for successful application of such techniques to everyday datamining tasks.

Foundations of Learning Classifier Systems

Foundations of Learning Classifier Systems
Title Foundations of Learning Classifier Systems PDF eBook
Author Larry Bull
Publisher Springer Science & Business Media
Pages 354
Release 2005-07-22
Genre Computers
ISBN 9783540250739

Download Foundations of Learning Classifier Systems Book in PDF, Epub and Kindle

This volume brings together recent theoretical work in Learning Classifier Systems (LCS), which is a Machine Learning technique combining Genetic Algorithms and Reinforcement Learning. It includes self-contained background chapters on related fields (reinforcement learning and evolutionary computation) tailored for a classifier systems audience and written by acknowledged authorities in their area - as well as a relevant historical original work by John Holland.

Scalable Optimization via Probabilistic Modeling

Scalable Optimization via Probabilistic Modeling
Title Scalable Optimization via Probabilistic Modeling PDF eBook
Author Martin Pelikan
Publisher Springer
Pages 363
Release 2007-01-12
Genre Mathematics
ISBN 3540349545

Download Scalable Optimization via Probabilistic Modeling Book in PDF, Epub and Kindle

I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.

Evolutionary Computation in Dynamic and Uncertain Environments

Evolutionary Computation in Dynamic and Uncertain Environments
Title Evolutionary Computation in Dynamic and Uncertain Environments PDF eBook
Author Shengxiang Yang
Publisher Springer
Pages 614
Release 2007-04-03
Genre Technology & Engineering
ISBN 3540497749

Download Evolutionary Computation in Dynamic and Uncertain Environments Book in PDF, Epub and Kindle

This book compiles recent advances of evolutionary algorithms in dynamic and uncertain environments within a unified framework. The book is motivated by the fact that some degree of uncertainty is inevitable in characterizing any realistic engineering systems. Discussion includes representative methods for addressing major sources of uncertainties in evolutionary computation, including handle of noisy fitness functions, use of approximate fitness functions, search for robust solutions, and tracking moving optimums.

Multi-Objective Machine Learning

Multi-Objective Machine Learning
Title Multi-Objective Machine Learning PDF eBook
Author Yaochu Jin
Publisher Springer Science & Business Media
Pages 657
Release 2007-06-10
Genre Technology & Engineering
ISBN 3540330194

Download Multi-Objective Machine Learning Book in PDF, Epub and Kindle

Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems.

Shepherding UxVs for Human-Swarm Teaming

Shepherding UxVs for Human-Swarm Teaming
Title Shepherding UxVs for Human-Swarm Teaming PDF eBook
Author Hussein A. Abbass
Publisher Springer Nature
Pages 339
Release 2021-03-19
Genre Technology & Engineering
ISBN 3030608980

Download Shepherding UxVs for Human-Swarm Teaming Book in PDF, Epub and Kindle

This book draws inspiration from natural shepherding, whereby a farmer utilizes sheepdogs to herd sheep, to inspire a scalable and inherently human friendly approach to swarm control. The book discusses advanced artificial intelligence (AI) approaches needed to design smart robotic shepherding agents capable of controlling biological swarms or robotic swarms of unmanned vehicles. These smart shepherding agents are described with the techniques applicable to the control of Unmanned X Vehicles (UxVs) including air (unmanned aerial vehicles or UAVs), ground (unmanned ground vehicles or UGVs), underwater (unmanned underwater vehicles or UUVs), and on the surface of water (unmanned surface vehicles or USVs). This book proposes how smart ‘shepherds’ could be designed and used to guide a swarm of UxVs to achieve a goal while ameliorating typical communication bandwidth issues that arise in the control of multi agent systems. The book covers a wide range of topics ranging from the design of deep reinforcement learning models for shepherding a swarm, transparency in swarm guidance, and ontology-guided learning, to the design of smart swarm guidance methods for shepherding with UGVs and UAVs. The book extends the discussion to human-swarm teaming by looking into the real-time analysis of human data during human-swarm interaction, the concept of trust for human-swarm teaming, and the design of activity recognition systems for shepherding. Presents a comprehensive look at human-swarm teaming; Tackles artificial intelligence techniques for swarm guidance; Provides artificial intelligence techniques for real-time human performance analysis.