Robust Bipedal Locomotion on Unknown Terrain

Robust Bipedal Locomotion on Unknown Terrain
Title Robust Bipedal Locomotion on Unknown Terrain PDF eBook
Author Hongkai Dai (S.M.)
Publisher
Pages 60
Release 2012
Genre
ISBN

Download Robust Bipedal Locomotion on Unknown Terrain Book in PDF, Epub and Kindle

A wide variety of bipedal robots have been constructed with the goal of achieving natural and efficient walking in outdoor environments. Unfortunately, there is still a lack of general schemes enabling the robots to reject terrain disturbances. In this thesis, two approaches are presented to enhance the performance of bipedal robots walking on modest terrain. The first approach searches for a walking gait that is intrinsically easily stabilized. The second approach constructs a robust controller to steer the robot towards the designated walking gait. Mathematically, the problem is modeled as rejecting the uncertainty in the guard function of a hybrid nonlinear system. Two metrics are proposed to quantify the robustness of such systems. The first metric concerns the 'average performance' of a robot walking over a stochastic terrain. The expected LQR cost-to-go for the post-impact states is chosen to measure the difficulty of steering those perturbed states back to the desired trajectory. A nonlinear programming problem is formulated to search for a trajectory which takes the least effort to stabilize. The second metric deals with the 'worst case performance', and defines the L2 gain for the linearization of the hybrid nonlinear system around a nominal periodic trajectory. In order to reduce the L2 gain, an iterative optimization scheme is presented. In each iteration, the algorithm solves a semidefinite programming problem to find the quadratic storage function and integrates a periodic differential Riccati equation to compute the linear controller. The simulation results demonstrate that both metrics are correlated to the actual number of steps the robot can traverse on the rough terrain without falling down. By optimizing these two metrics, the robot can walk a much longer distance over the unknown landscape.

Feedback Control of Dynamic Bipedal Robot Locomotion

Feedback Control of Dynamic Bipedal Robot Locomotion
Title Feedback Control of Dynamic Bipedal Robot Locomotion PDF eBook
Author Eric R. Westervelt
Publisher CRC Press
Pages 528
Release 2018-10-03
Genre Technology & Engineering
ISBN 1420053736

Download Feedback Control of Dynamic Bipedal Robot Locomotion Book in PDF, Epub and Kindle

Bipedal locomotion is among the most difficult challenges in control engineering. Most books treat the subject from a quasi-static perspective, overlooking the hybrid nature of bipedal mechanics. Feedback Control of Dynamic Bipedal Robot Locomotion is the first book to present a comprehensive and mathematically sound treatment of feedback design for achieving stable, agile, and efficient locomotion in bipedal robots. In this unique and groundbreaking treatise, expert authors lead you systematically through every step of the process, including: Mathematical modeling of walking and running gaits in planar robots Analysis of periodic orbits in hybrid systems Design and analysis of feedback systems for achieving stable periodic motions Algorithms for synthesizing feedback controllers Detailed simulation examples Experimental implementations on two bipedal test beds The elegance of the authors' approach is evident in the marriage of control theory and mechanics, uniting control-based presentation and mathematical custom with a mechanics-based approach to the problem and computational rendering. Concrete examples and numerous illustrations complement and clarify the mathematical discussion. A supporting Web site offers links to videos of several experiments along with MATLAB® code for several of the models. This one-of-a-kind book builds a solid understanding of the theoretical and practical aspects of truly dynamic locomotion in planar bipedal robots.

Robotics Research

Robotics Research
Title Robotics Research PDF eBook
Author Antonio Bicchi
Publisher Springer
Pages 712
Release 2017-07-24
Genre Technology & Engineering
ISBN 3319609165

Download Robotics Research Book in PDF, Epub and Kindle

ISRR, the "International Symposium on Robotics Research", is one of robotics pioneering Symposia, which has established over the past two decades some of the field's most fundamental and lasting contributions. This book presents the results of the seventeenth edition of "Robotics Research" ISRR15, offering a collection of a broad range of topics in robotics. The content of the contributions provides a wide coverage of the current state of robotics research.: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased maturity and expanded scope and define the state of the art of robotics and its future direction.

Bipedal Robots

Bipedal Robots
Title Bipedal Robots PDF eBook
Author Christine Chevallereau
Publisher John Wiley & Sons
Pages 249
Release 2013-03-01
Genre Technology & Engineering
ISBN 1118622979

Download Bipedal Robots Book in PDF, Epub and Kindle

This book presents various techniques to carry out the gait modeling, the gait patterns synthesis, and the control of biped robots. Some general information on the human walking, a presentation of the current experimental biped robots, and the application of walking bipeds are given. The modeling is based on the decomposition on a walking step into different sub-phases depending on the way each foot stands into contact on the ground. The robot design is dealt with according to the mass repartition and the choice of the actuators. Different ways to generate walking patterns are considered, such as passive walking and gait synthesis performed using optimization technique. Control based on the robot modeling, neural network methods, or intuitive approaches are presented. The unilaterality of contact is dealt with using on-line adaptation of the desired motion.

Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion

Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion
Title Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion PDF eBook
Author Romeo Orsolino
Publisher Istitituto Italiano di Tecnologia (IIT)
Pages 146
Release 2019-02-14
Genre Technology & Engineering
ISBN

Download Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion Book in PDF, Epub and Kindle

In the recent years, we witnessed an ever increasing number of successful hardware implementations of motion planners for legged robots. If one common property is to be identified among these real-world applications, that is the ability of performing online (re)planning. Online planning is forgiving, in the sense that it allows to relentlessly compensate for external disturbances of whatever form they might be, ranging from unmodeled dynamics to external pushes or unexpected obstacles and, at the same time, follow user commands. Initially replanning was restricted only to heuristic-based planners that exploit the low computational effort of simplified dynamic models. Such models deliberately only capture the main dynamics of the system, thus leaving to the controllers the issue of anchoring the desired trajectory to the whole body model of the robot. In recent years, however, a number of novel Model Predictive Control (MPC) approaches have been presented that attempt to increase the accuracy of the obtained solutions by employing more complex dynamic formulations, this without trading-off the computational efficiency of simplified models. In this dissertation, as an example of successful hardware implementation of heuristics and simplified model-based locomotion, I first describe the control framework that I developed for the generation of an omni-directional bounding gait for the HyQ quadruped robot. By analyzing the stable limit cycles for the sagittal dynamics and the Center of Pressure (CoP) for the lateral stabilization, the described locomotion framework is able to achieve a stable bounding gait while adapting the footsteps to terrains of mild roughness and to sudden changes of the user desired linear and angular velocities. The next topic reported and second contribution of this dissertation is my effort to formulate more descriptive simplified dynamic models, without compromising their computational efficiency, in order to extend the navigation capabilities of legged robots to complex geometry environments. With this in mind, I investigated the possibility of incorporating feasibility constraints in these template models and, in particular, I focused on the joint-torque limits, which are usually neglected at the planning stage. Along the same direction, the third contribution discussed in this thesis is the formulation of the so called actuation wrench polytope (AWP), defined as the set of feasible wrenches that an articulated robot can perform given its actuation limits. Interesected with the contact wrench cone (CWC), this yields a new 6D polytope that we name feasible wrench polytope (FWP), defined as the set of all wrenches that a legged robot can realize given its actuation capabilities and the friction constraints. Results are reported where, thanks to efficient computational geometry algorithms and to appropriate approximations, the FWP is employed for a one-step receding horizon optimization of center of mass trajectory and phase durations given a predefined step sequence on rough terrains. In order to augment the robot’s reachable workspace, I then decided to trade off the generality of the FWP formulation for a suboptimal scenario in which a quasi-static motion is assumed. This led to the definition of a new concept that I refer to under the name of feasible region. This can be seen as a different variant of 2D linear subspaces orthogonal to gravity where the robot is guaranteed to place its own center of mass (CoM) while being able to carry its own body weight given its actuation capabilities. The feasible region provides an intuitive tool for the visualization in 2D of the actuation capabilities of legged robots. The low dimensionality of the feasible region also enables the concurrent online optimization of actuation consistent CoM trajectories and target foothold locations on rough terrains, which can hardly be achieved with other state-of-the-art approaches.

Springer Handbook of Robotics

Springer Handbook of Robotics
Title Springer Handbook of Robotics PDF eBook
Author Bruno Siciliano
Publisher Springer
Pages 2259
Release 2016-07-27
Genre Technology & Engineering
ISBN 3319325523

Download Springer Handbook of Robotics Book in PDF, Epub and Kindle

The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook’s team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. Springer Handbook of Robotics Multimedia Extension Portal: http://handbookofrobotics.org/

Biped Locomotion

Biped Locomotion
Title Biped Locomotion PDF eBook
Author Miomir Vukobratovic
Publisher Springer Science & Business Media
Pages 366
Release 2012-12-06
Genre Technology & Engineering
ISBN 3642830064

Download Biped Locomotion Book in PDF, Epub and Kindle

Here for the first time in one book is a comprehensive and systematic approach to the dynamic modeling and control of biped locomotion robots. A survey is included of various approaches to the control of biped robots, and a new approach to the control of biped systems based on a complete dynamic model is presented in detail. The stability of complete biped system is presented for the first time as a highly nonlinear dynamic system. Also included is new software for the synthesis of a dynamically stable walk for arbitrary biped systems, presented here for the first time. A survey of various realizations of biped systems and numerous numerical examples are given. The reader is given a deep insight into the entire area of biped locomotion. The book covers all relevant approaches to the subject and gives the most complete account to date of dynamic modeling, control and realizations of biped systems.