Rigid Geometry of Curves and Their Jacobians
Title | Rigid Geometry of Curves and Their Jacobians PDF eBook |
Author | Werner Lütkebohmert |
Publisher | Springer |
Pages | 398 |
Release | 2016-01-26 |
Genre | Mathematics |
ISBN | 331927371X |
This book presents some of the most important aspects of rigid geometry, namely its applications to the study of smooth algebraic curves, of their Jacobians, and of abelian varieties - all of them defined over a complete non-archimedean valued field. The text starts with a survey of the foundation of rigid geometry, and then focuses on a detailed treatment of the applications. In the case of curves with split rational reduction there is a complete analogue to the fascinating theory of Riemann surfaces. In the case of proper smooth group varieties the uniformization and the construction of abelian varieties are treated in detail. Rigid geometry was established by John Tate and was enriched by a formal algebraic approach launched by Michel Raynaud. It has proved as a means to illustrate the geometric ideas behind the abstract methods of formal algebraic geometry as used by Mumford and Faltings. This book should be of great use to students wishing to enter this field, as well as those already working in it.
Rigid Analytic Geometry and Its Applications
Title | Rigid Analytic Geometry and Its Applications PDF eBook |
Author | Jean Fresnel |
Publisher | Springer Science & Business Media |
Pages | 303 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461200415 |
Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.
Automorphic Forms and Related Topics
Title | Automorphic Forms and Related Topics PDF eBook |
Author | Samuele Anni |
Publisher | American Mathematical Soc. |
Pages | 298 |
Release | 2019-06-19 |
Genre | Mathematics |
ISBN | 147043525X |
This volume contains the proceedings of the Building Bridges: 3rd EU/US Summer School and Workshop on Automorphic Forms and Related Topics, which was held in Sarajevo from July 11–22, 2016. The articles summarize material which was presented during the lectures and speed talks during the workshop. These articles address various aspects of the theory of automorphic forms and its relations with the theory of L-functions, the theory of elliptic curves, and representation theory. In addition to mathematical content, the workshop held a panel discussion on diversity and inclusion, which was chaired by a social scientist who has contributed to this volume as well. This volume is intended for researchers interested in expanding their own areas of focus, thus allowing them to “build bridges” to mathematical questions in other fields.
The Arithmetic and Geometry of Algebraic Cycles
Title | The Arithmetic and Geometry of Algebraic Cycles PDF eBook |
Author | B. Brent Gordon |
Publisher | American Mathematical Soc. |
Pages | 462 |
Release | 2000 |
Genre | Mathematics |
ISBN | 0821819542 |
The NATO ASI/CRM Summer School at Banff offered a unique, full, and in-depth account of the topic, ranging from introductory courses by leading experts to discussions of the latest developments by all participants. The papers have been organized into three categories: cohomological methods; Chow groups and motives; and arithmetic methods.As a subfield of algebraic geometry, the theory of algebraic cycles has gone through various interactions with algebraic K-theory, Hodge theory, arithmetic algebraic geometry, number theory, and topology. These interactions have led to developments such as a description of Chow groups in terms of algebraic K-theory, the application of the Merkurjev-Suslin theorem to the arithmetic Abel-Jacobi mapping, progress on the celebrated conjectures of Hodge, and of Tate, which compute cycles classgroups respectively in terms of Hodge theory or as the invariants of a Galois group action on étale cohomology, the conjectures of Bloch and Beilinson, which explain the zero or pole of the $L$-function of a variety and interpret the leading non-zero coefficient of its Taylor expansion at a criticalpoint, in terms of arithmetic and geometric invariant of the variety and its cycle class groups.The immense recent progress in the theory of algebraic cycles is based on its many interactions with several other areas of mathematics. This conference was the first to focus on both arithmetic and geometric aspects of algebraic cycles. It brought together leading experts to speak from their various points of view. A unique opportunity was created to explore and view the depth and the breadth of the subject. This volume presents the intriguing results.
Tropical and Non-Archimedean Geometry
Title | Tropical and Non-Archimedean Geometry PDF eBook |
Author | Omid Amini |
Publisher | American Mathematical Soc. |
Pages | 274 |
Release | 2014-12-26 |
Genre | Mathematics |
ISBN | 1470410214 |
Over the past decade, it has become apparent that tropical geometry and non-Archimedean geometry should be studied in tandem; each subject has a great deal to say about the other. This volume is a collection of articles dedicated to one or both of these disciplines. Some of the articles are based, at least in part, on the authors' lectures at the 2011 Bellairs Workshop in Number Theory, held from May 6-13, 2011, at the Bellairs Research Institute, Holetown, Barbados. Lecture topics covered in this volume include polyhedral structures on tropical varieties, the structure theory of non-Archimedean curves (algebraic, analytic, tropical, and formal), uniformisation theory for non-Archimedean curves and abelian varieties, and applications to Diophantine geometry. Additional articles selected for inclusion in this volume represent other facets of current research and illuminate connections between tropical geometry, non-Archimedean geometry, toric geometry, algebraic graph theory, and algorithmic aspects of systems of polynomial equations.
Algorithmic Number Theory
Title | Algorithmic Number Theory PDF eBook |
Author | Claus Fieker |
Publisher | Springer |
Pages | 526 |
Release | 2003-08-02 |
Genre | Mathematics |
ISBN | 3540454551 |
This book constitutes the refereed proceedings of the 5th International Algorithmic Number Theory Symposium, ANTS-V, held in Sydney, Australia, in July 2002. The 34 revised full papers presented together with 5 invited papers have gone through a thorough round of reviewing, selection and revision. The papers are organized in topical sections on number theory, arithmetic geometry, elliptic curves and CM, point counting, cryptography, function fields, discrete logarithms and factoring, Groebner bases, and complexity.
Integrable Systems and Algebraic Geometry
Title | Integrable Systems and Algebraic Geometry PDF eBook |
Author | Ron Donagi |
Publisher | Cambridge University Press |
Pages | 537 |
Release | 2020-03-02 |
Genre | Mathematics |
ISBN | 110871577X |
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.