Riemann Solvers and Numerical Methods for Fluid Dynamics
Title | Riemann Solvers and Numerical Methods for Fluid Dynamics PDF eBook |
Author | Eleuterio F. Toro |
Publisher | Springer Science & Business Media |
Pages | 635 |
Release | 2013-04-17 |
Genre | Technology & Engineering |
ISBN | 366203915X |
High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.
Riemann Solvers and Numerical Methods for Fluid Dynamics
Title | Riemann Solvers and Numerical Methods for Fluid Dynamics PDF eBook |
Author | Eleuterio F. Toro |
Publisher | Springer Science & Business Media |
Pages | 724 |
Release | 2009-04-21 |
Genre | Technology & Engineering |
ISBN | 3540498346 |
High resolution upwind and centered methods are a mature generation of computational techniques. They are applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. For its third edition the book has been thoroughly revised to contain new material.
Riemann Solvers and Numerical Methods for Fluid Dynamics
Title | Riemann Solvers and Numerical Methods for Fluid Dynamics PDF eBook |
Author | E. F. Toro |
Publisher | Springer Science & Business Media |
Pages | 620 |
Release | 1997 |
Genre | Computational fluid dynamics |
ISBN |
Riemann Problems and Jupyter Solutions
Title | Riemann Problems and Jupyter Solutions PDF eBook |
Author | David I. Ketcheson |
Publisher | SIAM |
Pages | 178 |
Release | 2020-06-26 |
Genre | Mathematics |
ISBN | 1611976219 |
This book addresses an important class of mathematical problems (the Riemann problem) for first-order hyperbolic partial differential equations (PDEs), which arise when modeling wave propagation in applications such as fluid dynamics, traffic flow, acoustics, and elasticity. The solution of the Riemann problem captures essential information about these models and is the key ingredient in modern numerical methods for their solution. This book covers the fundamental ideas related to classical Riemann solutions, including their special structure and the types of waves that arise, as well as the ideas behind fast approximate solvers for the Riemann problem. The emphasis is on the general ideas, but each chapter delves into a particular application. Riemann Problems and Jupyter Solutions is available in electronic form as a collection of Jupyter notebooks that contain executable computer code and interactive figures and animations, allowing readers to grasp how the concepts presented are affected by important parameters and to experiment by varying those parameters themselves. The only interactive book focused entirely on the Riemann problem, it develops each concept in the context of a specific physical application, helping readers apply physical intuition in learning mathematical concepts. Graduate students and researchers working in the analysis and/or numerical solution of hyperbolic PDEs will find this book of interest. This includes mathematicians, as well as scientists and engineers, working on wave propagation problems. Educators interested in developing instructional materials using Jupyter notebooks will also find this book useful. The book is appropriate for courses in Numerical Methods for Hyperbolic PDEs and Analysis of Hyperbolic PDEs, and it can be a great supplement for courses in computational fluid dynamics, acoustics, and gas dynamics.
Numerical Methods for Conservation Laws
Title | Numerical Methods for Conservation Laws PDF eBook |
Author | LEVEQUE |
Publisher | Birkhäuser |
Pages | 221 |
Release | 2013-11-11 |
Genre | Science |
ISBN | 3034851162 |
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Principles of Computational Fluid Dynamics
Title | Principles of Computational Fluid Dynamics PDF eBook |
Author | Pieter Wesseling |
Publisher | Springer Science & Business Media |
Pages | 651 |
Release | 2009-12-21 |
Genre | Mathematics |
ISBN | 3642051456 |
This up-to-date book gives an account of the present state of the art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated in some detail, using elementary methods. The author gives many pointers to the current literature, facilitating further study. This book will become the standard reference for CFD for the next 20 years.
Mathematical and Computational Methods for Compressible Flow
Title | Mathematical and Computational Methods for Compressible Flow PDF eBook |
Author | Miloslav Feistauer |
Publisher | Oxford University Press |
Pages | 560 |
Release | 2003 |
Genre | Mathematics |
ISBN | 9780198505884 |
This book is concerned with mathematical and numerical methods for compressible flow. It aims to provide the reader with a sufficiently detailed and extensive, mathematically precise, but comprehensible guide, through a wide spectrum of mathematical and computational methods used in Computational Fluid Dynamics (CFD) for the numerical simulation of compressible flow. Up-to-date techniques applied in the numerical solution of inviscid as well as viscous compressible flow on unstructured meshes are explained, thus allowing the simulation of complex three-dimensional technically relevant problems. Among some of the methods addressed are finite volume methods using approximate Riemann solvers, finite element techniques, such as the streamline diffusion and the discontinuous Galerkin methods, and combined finite volume - finite element schemes. The book gives a complex insight into the numerics of compressible flow, covering the development of numerical schemes and their theoretical mathematical analysis, their verification on test problems and use in solving practical engineering problems. The book will be helpful to specialists coming into contact with CFD - pure and applied mathematicians, aerodynamists, engineers, physicists and natural scientists. It will also be suitable for advanced undergraduate, graduate and postgraduate students of mathematics and technical sciences.