Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials

Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials
Title Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials PDF eBook
Author Toshiro Tango
Publisher CRC Press
Pages 376
Release 2017-09-14
Genre Mathematics
ISBN 1498747906

Download Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials Book in PDF, Epub and Kindle

Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials is the first book focused on the application of generalized linear mixed models and its related models in the statistical design and analysis of repeated measures from randomized controlled trials. The author introduces a new repeated measures design called S:T design combined with mixed models as a practical and useful framework of parallel group RCT design because of easy handling of missing data and sample size reduction. The book emphasizes practical, rather than theoretical, aspects of statistical analyses and the interpretation of results. It includes chapters in which the author describes some old-fashioned analysis designs that have been in the literature and compares the results with those obtained from the corresponding mixed models. The book will be of interest to biostatisticians, researchers, and graduate students in the medical and health sciences who are involved in clinical trials. Author Website:Data sets and programs used in the book are available at http://www.medstat.jp/downloadrepeatedcrc.html

Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials

Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials
Title Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials PDF eBook
Author Toshiro Tango
Publisher CRC Press
Pages 268
Release 2017-09-14
Genre Mathematics
ISBN 1351648144

Download Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials Book in PDF, Epub and Kindle

Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials is the first book focused on the application of generalized linear mixed models and its related models in the statistical design and analysis of repeated measures from randomized controlled trials. The author introduces a new repeated measures design called S:T design combined with mixed models as a practical and useful framework of parallel group RCT design because of easy handling of missing data and sample size reduction. The book emphasizes practical, rather than theoretical, aspects of statistical analyses and the interpretation of results. It includes chapters in which the author describes some old-fashioned analysis designs that have been in the literature and compares the results with those obtained from the corresponding mixed models. The book will be of interest to biostatisticians, researchers, and graduate students in the medical and health sciences who are involved in clinical trials. Author Website: Data sets and programs used in the book are available at http://www.medstat.jp/downloadrepeatedcrc.html

Longitudinal Data Analysis

Longitudinal Data Analysis
Title Longitudinal Data Analysis PDF eBook
Author Garrett Fitzmaurice
Publisher CRC Press
Pages 633
Release 2008-08-11
Genre Mathematics
ISBN 142001157X

Download Longitudinal Data Analysis Book in PDF, Epub and Kindle

Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory

Linear Mixed Models

Linear Mixed Models
Title Linear Mixed Models PDF eBook
Author Brady T. West
Publisher CRC Press
Pages 376
Release 2006-11-22
Genre Mathematics
ISBN 1420010433

Download Linear Mixed Models Book in PDF, Epub and Kindle

Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav

Design and Analysis of Group-randomized Trials

Design and Analysis of Group-randomized Trials
Title Design and Analysis of Group-randomized Trials PDF eBook
Author David M. Murray
Publisher Monographs in Epidemiology and
Pages 481
Release 1998
Genre Medical
ISBN 0195120361

Download Design and Analysis of Group-randomized Trials Book in PDF, Epub and Kindle

Community or group-randomized trials, which are usually done to evaluate the effect of health promotion effors. It reviews the underlying issues, describes the most widely used research design, and presents the many approaches to analysis that are now available.

Longitudinal Data Analysis

Longitudinal Data Analysis
Title Longitudinal Data Analysis PDF eBook
Author Ikuko Funatogawa
Publisher Springer
Pages 150
Release 2019-02-04
Genre Mathematics
ISBN 9811000778

Download Longitudinal Data Analysis Book in PDF, Epub and Kindle

This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects model is changed into a dynamic one by the introduction of the auto-regression term. Response levels in this model gradually move toward an asymptote or equilibrium which depends on covariates and random effects. The book provides relationships of the autoregressive linear mixed effects models with linear mixed effects models, marginal models, transition models, nonlinear mixed effects models, growth curves, differential equations, and state space representation. State space representation with a modified Kalman filter provides log likelihoods for maximum likelihood estimation, and this representation is suitable for unequally spaced longitudinal data. The extension to multivariate longitudinal data analysis is also provided. Topics in medical fields, such as response-dependent dose modifications, response-dependent dropouts, and randomized controlled trials are discussed. The text is written in plain terms understandable for researchers in other disciplines such as econometrics, sociology, and ecology for the progress of interdisciplinary research.

Linear Mixed-Effects Models Using R

Linear Mixed-Effects Models Using R
Title Linear Mixed-Effects Models Using R PDF eBook
Author Andrzej Gałecki
Publisher Springer Science & Business Media
Pages 558
Release 2013-02-05
Genre Mathematics
ISBN 1461439000

Download Linear Mixed-Effects Models Using R Book in PDF, Epub and Kindle

Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.