Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials
Title | Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials PDF eBook |
Author | Toshiro Tango |
Publisher | CRC Press |
Pages | 376 |
Release | 2017-09-14 |
Genre | Mathematics |
ISBN | 1498747906 |
Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials is the first book focused on the application of generalized linear mixed models and its related models in the statistical design and analysis of repeated measures from randomized controlled trials. The author introduces a new repeated measures design called S:T design combined with mixed models as a practical and useful framework of parallel group RCT design because of easy handling of missing data and sample size reduction. The book emphasizes practical, rather than theoretical, aspects of statistical analyses and the interpretation of results. It includes chapters in which the author describes some old-fashioned analysis designs that have been in the literature and compares the results with those obtained from the corresponding mixed models. The book will be of interest to biostatisticians, researchers, and graduate students in the medical and health sciences who are involved in clinical trials. Author Website:Data sets and programs used in the book are available at http://www.medstat.jp/downloadrepeatedcrc.html
Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials
Title | Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials PDF eBook |
Author | Toshiro Tango |
Publisher | CRC Press |
Pages | 268 |
Release | 2017-09-14 |
Genre | Mathematics |
ISBN | 1351648144 |
Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials is the first book focused on the application of generalized linear mixed models and its related models in the statistical design and analysis of repeated measures from randomized controlled trials. The author introduces a new repeated measures design called S:T design combined with mixed models as a practical and useful framework of parallel group RCT design because of easy handling of missing data and sample size reduction. The book emphasizes practical, rather than theoretical, aspects of statistical analyses and the interpretation of results. It includes chapters in which the author describes some old-fashioned analysis designs that have been in the literature and compares the results with those obtained from the corresponding mixed models. The book will be of interest to biostatisticians, researchers, and graduate students in the medical and health sciences who are involved in clinical trials. Author Website: Data sets and programs used in the book are available at http://www.medstat.jp/downloadrepeatedcrc.html
Longitudinal Data Analysis
Title | Longitudinal Data Analysis PDF eBook |
Author | Garrett Fitzmaurice |
Publisher | CRC Press |
Pages | 633 |
Release | 2008-08-11 |
Genre | Mathematics |
ISBN | 142001157X |
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
Linear Mixed Models
Title | Linear Mixed Models PDF eBook |
Author | Brady T. West |
Publisher | CRC Press |
Pages | 376 |
Release | 2006-11-22 |
Genre | Mathematics |
ISBN | 1420010433 |
Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav
Design and Analysis of Group-randomized Trials
Title | Design and Analysis of Group-randomized Trials PDF eBook |
Author | David M. Murray |
Publisher | Monographs in Epidemiology and |
Pages | 481 |
Release | 1998 |
Genre | Medical |
ISBN | 0195120361 |
Community or group-randomized trials, which are usually done to evaluate the effect of health promotion effors. It reviews the underlying issues, describes the most widely used research design, and presents the many approaches to analysis that are now available.
Longitudinal Data Analysis
Title | Longitudinal Data Analysis PDF eBook |
Author | Ikuko Funatogawa |
Publisher | Springer |
Pages | 150 |
Release | 2019-02-04 |
Genre | Mathematics |
ISBN | 9811000778 |
This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects model is changed into a dynamic one by the introduction of the auto-regression term. Response levels in this model gradually move toward an asymptote or equilibrium which depends on covariates and random effects. The book provides relationships of the autoregressive linear mixed effects models with linear mixed effects models, marginal models, transition models, nonlinear mixed effects models, growth curves, differential equations, and state space representation. State space representation with a modified Kalman filter provides log likelihoods for maximum likelihood estimation, and this representation is suitable for unequally spaced longitudinal data. The extension to multivariate longitudinal data analysis is also provided. Topics in medical fields, such as response-dependent dose modifications, response-dependent dropouts, and randomized controlled trials are discussed. The text is written in plain terms understandable for researchers in other disciplines such as econometrics, sociology, and ecology for the progress of interdisciplinary research.
Linear Mixed-Effects Models Using R
Title | Linear Mixed-Effects Models Using R PDF eBook |
Author | Andrzej Gałecki |
Publisher | Springer Science & Business Media |
Pages | 558 |
Release | 2013-02-05 |
Genre | Mathematics |
ISBN | 1461439000 |
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.