Relations and Graphs
Title | Relations and Graphs PDF eBook |
Author | Gunther Schmidt |
Publisher | Springer Science & Business Media |
Pages | 312 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 3642779689 |
Relational methods can be found at various places in computer science, notably in data base theory, relational semantics of concurrency, relationaltype theory, analysis of rewriting systems, and modern programming language design. In addition, they appear in algorithms analysis and in the bulk of discrete mathematics taught to computer scientists. This book is devoted to the background of these methods. It explains how to use relational and graph-theoretic methods systematically in computer science. A powerful formal framework of relational algebra is developed with respect to applications to a diverse range of problem areas. Results are first motivated by practical examples, often visualized by both Boolean 0-1-matrices and graphs, and then derived algebraically.
Intermediate Algebra 2e
Title | Intermediate Algebra 2e PDF eBook |
Author | Lynn Marecek |
Publisher | |
Pages | |
Release | 2020-05-06 |
Genre | |
ISBN | 9781951693848 |
Discrete Mathematics
Title | Discrete Mathematics PDF eBook |
Author | Oscar Levin |
Publisher | Createspace Independent Publishing Platform |
Pages | 342 |
Release | 2016-08-16 |
Genre | |
ISBN | 9781534970748 |
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Graph Representation Learning
Title | Graph Representation Learning PDF eBook |
Author | William L. William L. Hamilton |
Publisher | Springer Nature |
Pages | 141 |
Release | 2022-06-01 |
Genre | Computers |
ISBN | 3031015886 |
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
The Geometry of René Descartes
Title | The Geometry of René Descartes PDF eBook |
Author | René Descartes |
Publisher | Courier Corporation |
Pages | 275 |
Release | 2012-09-19 |
Genre | Mathematics |
ISBN | 0486158179 |
The great work that founded analytical geometry. Includes the original French text, Descartes' own diagrams, and the definitive Smith-Latham translation. "The greatest single step ever made in the progress of the exact sciences." — John Stuart Mill.
Mathematical Reasoning
Title | Mathematical Reasoning PDF eBook |
Author | Theodore A. Sundstrom |
Publisher | Prentice Hall |
Pages | 0 |
Release | 2007 |
Genre | Logic, Symbolic and mathematical |
ISBN | 9780131877184 |
Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom
College Algebra
Title | College Algebra PDF eBook |
Author | Jay Abramson |
Publisher | |
Pages | 892 |
Release | 2018-01-07 |
Genre | Mathematics |
ISBN | 9789888407439 |
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory