Regulation of Gene Expression by Small RNAs

Regulation of Gene Expression by Small RNAs
Title Regulation of Gene Expression by Small RNAs PDF eBook
Author Rajesh K. Gaur
Publisher CRC Press
Pages 440
Release 2009-04-27
Genre Science
ISBN 1420008706

Download Regulation of Gene Expression by Small RNAs Book in PDF, Epub and Kindle

New Findings Revolutionize Concepts of Gene FunctionEndogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it's been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 p

Regulation of Gene Expression by Small RNAs

Regulation of Gene Expression by Small RNAs
Title Regulation of Gene Expression by Small RNAs PDF eBook
Author Rajesh K. Gaur
Publisher CRC Press
Pages 440
Release 2017-05-31
Genre
ISBN 9781138111738

Download Regulation of Gene Expression by Small RNAs Book in PDF, Epub and Kindle

New Findings Revolutionize Concepts of Gene Function Endogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it's been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 percent of gene expression. Regulation of Gene Expression by Small RNAs brings together the pioneering work of researchers who discuss their work involving a wide variety of small RNA regulatory pathways in organisms ranging from bacteria to humans. In addition to exploring the biogenesis and processing of these regulatory RNAs, they also consider the functional importance of these pathways in host organisms. Assisting current and future researchers, this unique groundbreaking work -- Provides a suite of cutting-edge resources for the study of microRNA ontology and function Includes a technology guide for those seeking to assay microRNA expression Explores the mechanisms by which microRNAs regulate gene expression in animal cells, including the regulation of gene expression by RNA-mediated transcriptional gene silencing Discusses a fast and low-cost approach for reversing genetic influences in mammals Looks at breakthroughs in the use of microRNA-based therapy for HIV and cancer This volume captures the essence of the breadth and excitement surrounding the newly discovered regulatory roles of small RNAs. The powerful new approach in the study of gene function described in this text is leading to some remarkable findings that have the potential to revolutionize our understanding of genetic function and the treatment of diseases otherwise considered intractable.

Small RNAs:

Small RNAs:
Title Small RNAs: PDF eBook
Author Wolfgang Nellen
Publisher Springer Science & Business Media
Pages 227
Release 2007-09-12
Genre Science
ISBN 3540281304

Download Small RNAs: Book in PDF, Epub and Kindle

In recent years, the discovery of functional small RNAs has brought about an unprecedented revolution within the field of molecular biology. This volume describes strategies for the discovery and validation of small RNAs. It provides a snapshot of our current understanding of the different mechanisms triggered by small RNAs and the variations encountered in different organisms.

Regulating with RNA in Bacteria and Archaea

Regulating with RNA in Bacteria and Archaea
Title Regulating with RNA in Bacteria and Archaea PDF eBook
Author Gisela Storz
Publisher John Wiley & Sons
Pages 1065
Release 2018-11-01
Genre Medical
ISBN 1683672941

Download Regulating with RNA in Bacteria and Archaea Book in PDF, Epub and Kindle

Revealing the many roles of RNA in regulating gene expression For decades after the discoveries of messenger RNA, transfer RNA, and ribosomal RNA, it was largely assumed that the role of RNA in the cell was limited to shuttling the genomic message, chaperoning amino acids, and toiling in the ribosomes. Eventually, hints that RNA molecules might have regulatory roles began to appear. With the advent of genomics and bioinformatics, it became evident that numerous other RNA forms exist and have specific functions, including small RNAs (sRNA), RNA thermometers, and riboswitches to regulate core metabolic pathways, bacterial pathogenesis, iron homeostasis, quorum sensing, and biofilm formation. All of these functions, and more, are presented in Regulating with RNA in Bacteria and Archaea, written by RNA biologists from around the globe. Divided into eight sections-RNases and Helicases, Cis-Acting RNAs, Cis Encoded Base Pairing RNAs, Trans-Encoded Base Pairing RNAs, Protein Titration and Scaffolding, General Considerations, Emerging Topics, and Resources-this book serves as an excellent resource for established RNA biologists and for the many scientists who are studying regulated cellular systems. It is no longer a fair assumption that gene expression regulation is the provenance of proteins only or that control is exerted primarily at the level of transcription. This book makes clear that regulatory RNAs are key partners along with proteins in controlling the complex interactions and pathways found within prokaryotes.

Discovery of Endogenous Plant Small RNAs and Their Role in Trans-species Gene Regulation

Discovery of Endogenous Plant Small RNAs and Their Role in Trans-species Gene Regulation
Title Discovery of Endogenous Plant Small RNAs and Their Role in Trans-species Gene Regulation PDF eBook
Author Saima Shahid
Publisher
Pages
Release 2017
Genre
ISBN

Download Discovery of Endogenous Plant Small RNAs and Their Role in Trans-species Gene Regulation Book in PDF, Epub and Kindle

Endogenous small RNAs (20 - 24 nt) engage in complex regulation of gene expression and thus shape and direct plant development, defense, stress response and the epigenome. Based on their biogenesis and functions, endogenous small RNAs can be divided into many categories and subcategories. MicroRNAs (miRNAs) represent the most well-annotated type of small RNAs that regulate gene expression via transcript cleavage or translational repression. However, MIRNAs only contribute to a minor fraction of all the expressed small RNAs in plants. Small RNA genes other than MIRNAs remain poorly annotated, which limits complete elucidation of their regulatory roles. Furthermore, inconsistent MIRNA discovery methodologies in published studies have resulted in widespread discrepancies among existing annotations. To address these issues, and to improve current understanding of small RNA gene functions, we developed robust methodologies for de novo annotation of plant small RNA genes. Our comprehensive small RNA loci discovery based on deep sequencing data and small RNA biogenesis patterns provided refinement of existing MIRNA annotations and their functions in the basal land plant Physcomitrella patens. We also identified numerous P. patens siRNA loci producing almost equal mixture of 23-24 nt small RNAs, confirming that the heterochromatic siRNA pathway is present in the bryophyte lineage. Our de novo annotation of small RNA genes in Amborella trichopoda, the basal-most lineage of flowering plants, revealed a striking predominance of lineage-specific, intronic 23-24 nt MIRNAs and hairpin RNAs that has not been reported in any plants so far. Most of these non-canonical MIRNAs lacked easily identifiable targets in the transcriptome, suggesting these may have functions other than sequence-dependent targeting. In the monocot rice, 24 nt long intronic miRNAs function in RNA dependent DNA methylation. It is possible that A. trichopoda 23-24 nt MIRNAs function in a similar way, and such non-canonical miRNA pathways may have been retained in specific lineages of flowering plants. At least 19 A. trichopoda miRNA families were broadly conserved across land plants, and most of these also had conserved targets. These findings confirmed the presence of all major small RNA gene classes in the basal lineage of flowering plants, as well as the existence of species-specific diversities in small RNA populations expressed in non-model plants. Finally, we explored the potential exchange of endogenous small RNAs between parasitic plants and their hosts. Parasitic plants intimately connect to their hosts through a specialized feeding organ called haustoria. Bidirectional exchange of thousands of mRNAs between the stem parasite C. campestris and its hosts have been previously reported. Host-induced gene silencing has also been shown in several parasitic species including Cuscuta and Triphysaria versicolor (root parasite). De novo annotation of small RNA genes from C. campestris - A. thaliana associations revealed an unprecedented abundance of 22 nt parasite miRNAs in the haustorial interface. Several of these interface-induced C. campestris miRNAs directed slicing of six host mRNAs and triggered secondary siRNA production specifically in interface. Among these targets, Botrytis Induced Kinase 1 (BIK1) encodes a receptor-like cytoplasmic kinase and functions in in plant immunity. Another target, Sieve-Element-Occlusion-Related 1 (SEOR1) encodes a protein thought to be involved in sealing phloem sieve elements after wounding. Additionally, mRNAs encoding three auxin receptors, TIR1, AFB2, and AFB3 were targeted by a C. campestris miRNA and showed a unique pattern of secondary siRNA production in parasite-host interface. Such secondary siRNA production depended on host machinery for RNA interference. Growth of C. campestris on seor1 mutant significantly increased parasite biomass accumulation compared to wild type. Furthermore, interface-induced parasite miRNA-directed cleavage of host TIR1/AFB was also detected in C. campestris -N. benthamiana. Our findings thus confirm conserved trans-species targeting by C. campestris miRNAs across the haustorial interface, and the potential roles of these miRNAs as virulence factors in plant parasitism.

Regulatory RNAs in Prokaryotes

Regulatory RNAs in Prokaryotes
Title Regulatory RNAs in Prokaryotes PDF eBook
Author Anita Marchfelder
Publisher Springer Science & Business Media
Pages 263
Release 2012-12-23
Genre Science
ISBN 3709102189

Download Regulatory RNAs in Prokaryotes Book in PDF, Epub and Kindle

This book provides a comprehensive and up-to-date collection of review articles focusing on RNA-mediated regulation in prokaryotes. The various modes of action include the direct interaction with proteins, direct sensing of metabolites or of physical parameters, and the interaction with RNAs to stimulate or prevent binding of ribosomes or to stimulate degradation. Written by leading experts in the field, the book covers small RNA functions, RNA thermometers, riboswitches, the diversity of small RNA-guided CRISPR-Cas defense systems and selected RNA chaperons in both prokaryotic domains, bacteria and archaea. Recent advances towards the computational identification of regulatory RNAs and their targets are included and particular attention is paid to small RNA in pathogenic bacteria. This volume is the only one exclusively covering regulatory RNAs in the prokaryotic domains to date, making it essential literature for anyone interested in RNA function and gene regulation and a valuable resource for teaching these concepts.

Innovative Medicine

Innovative Medicine
Title Innovative Medicine PDF eBook
Author Kazuwa Nakao
Publisher Springer
Pages 330
Release 2015-10-13
Genre Science
ISBN 4431556516

Download Innovative Medicine Book in PDF, Epub and Kindle

This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.