Regulation of Gene Expression and Brain Function

Regulation of Gene Expression and Brain Function
Title Regulation of Gene Expression and Brain Function PDF eBook
Author Paul J. Harrison
Publisher Springer Science & Business Media
Pages 71
Release 2012-12-06
Genre Science
ISBN 3642784585

Download Regulation of Gene Expression and Brain Function Book in PDF, Epub and Kindle

Gene expression converts the information coded by our genes into proteins. These determine the structure and function of an organ such as the brain. Itis therefore an essential process, linking molecular genetics with neurochemistry and behavioral neuroscience. This volume presents a didactic approach to the understanding of the basic processes of gene expression and their involvement in certain brain diseases, such asAlzheimer's disease and schizophrenia. Generously illustrated, the contributions provide a valuable outline of this key aspect of molecular neurobiology and clinical neuroscience.

DNA Modifications in the Brain

DNA Modifications in the Brain
Title DNA Modifications in the Brain PDF eBook
Author Timothy W Bredy
Publisher Academic Press
Pages 182
Release 2016-12-23
Genre Science
ISBN 0128017813

Download DNA Modifications in the Brain Book in PDF, Epub and Kindle

DNA Modifications in the Brain: Neuroepigenetic Regulation of Gene Expression begins with an historical overview of the early discoveries surrounding DNA methylation in the mammalian brain and then explores the evidence supporting a role for this epigenetic mechanism in controlling gene expression programs across the lifespan in both normal and diseased states. Chapters describe new directions and technological advances, and provide an overview of what the future holds for this exciting new field. This book is ideal for medical, graduate and advanced undergraduate students, but is also a great resource for researchers who need a broad introduction to the dynamic nature of DNA that sheds light on evolving concepts of gene-environment interaction and their effects on adaptation and neuropsychiatric disease. Provides a comprehensive overview of the many facets of DNA modifications Discusses the impact of this dynamic epigenetic mechanism across brain development and lifespan at behavioral, cognitive, molecular and genetic levels Contains contributions by influential leaders in the field Edited by a Neuroscientist to further promote synthesis between epigenetics, neuroscience, and clinical relevance

Molecular Biology of The Cell

Molecular Biology of The Cell
Title Molecular Biology of The Cell PDF eBook
Author Bruce Alberts
Publisher
Pages 0
Release 2002
Genre Cytology
ISBN 9780815332183

Download Molecular Biology of The Cell Book in PDF, Epub and Kindle

Transcription Factors in the Nervous System

Transcription Factors in the Nervous System
Title Transcription Factors in the Nervous System PDF eBook
Author Gerald Thiel
Publisher John Wiley & Sons
Pages 505
Release 2006-05-12
Genre Science
ISBN 3527607366

Download Transcription Factors in the Nervous System Book in PDF, Epub and Kindle

This first book to cover neural development, neuronal survival and function on the genetic level outlines promising approaches for novel therapeutic strategies in fighting neurodegenerative disorders, such as Alzheimer's disease. Focusing on transcription factors, the text is clearly divided into three sections devoted to transcriptional control of neural development, brain function and transcriptional dysregulation induced neurological diseases. With a chapter written by Nobel laureate Eric Kandel, this is essential reading for neurobiologists, geneticists, biochemists, cell biologists, neurochemists and molecular biologists.

Gene Expression to Neurobiology and Behaviour

Gene Expression to Neurobiology and Behaviour
Title Gene Expression to Neurobiology and Behaviour PDF eBook
Author Oliver Braddick
Publisher Elsevier
Pages 374
Release 2011-09-26
Genre Medical
ISBN 0444538844

Download Gene Expression to Neurobiology and Behaviour Book in PDF, Epub and Kindle

How does the genome, interacting with the multi-faceted environment, translate into the development by which the human brain achieves its astonishing, adaptive array of cognitive and behavioral capacities? Why and how does this process sometimes lead to neurodevelopmental disorders with a major, lifelong personal and social impact? This volume of Progress in Brain Research links findings on the structural development of the human brain, the expression of genes in behavioral and cognitive phenotypes, environmental effects on brain development, and developmental processes in perception, action, attention, cognitive control, social cognition, and language, in an attempt to answer these questions. Leading authors review the state-of-the-art in their field of investigation and provide their views and perspectives for future research Chapters are extensively referenced to provide readers with a comprehensive list of resources on the topics covered All chapters include comprehensive background information and are written in a clear form that is also accessible to the non-specialist

Chromatin Signaling and Neurological Disorders

Chromatin Signaling and Neurological Disorders
Title Chromatin Signaling and Neurological Disorders PDF eBook
Author
Publisher Academic Press
Pages 378
Release 2019-05-24
Genre Medical
ISBN 0128137975

Download Chromatin Signaling and Neurological Disorders Book in PDF, Epub and Kindle

Chromatin Signaling and Neurological Disorders, Volume Seven, explores our current understanding of how chromatin signaling regulates access to genetic information, and how their aberrant regulation can contribute to neurological disorders. Researchers, students and clinicians will not only gain a strong grounding on the relationship between chromatin signaling and neurological disorders, but they'll also discover approaches to better interpret and employ new diagnostic studies and epigenetic-based therapies. A diverse range of chapters from international experts speaks to the basis of chromatin and epigenetic signaling pathways and specific chromatin signaling factors that regulate a range of diseases. In addition to the basic science of chromatin signaling factors, each disease-specific chapter speaks to the translational or clinical significance of recent findings, along with important implications for the development of epigenetics-based therapeutics. Common themes of translational significance are also identified across disease types, as well as the future potential of chromatin signaling research. Examines specific chromatin signaling factors that regulate spinal muscular atrophy, ulbospinal muscular atrophy, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, multiple sclerosis, Angelman syndrome, Rader-Willi syndrome, and more Contains chapter contributions from international experts who speak to the clinical significance of recent findings and the implications for the development of epigenetics-based therapeutics Provides researchers, students and clinicians with approaches to better interpret and employ new diagnostic studies for treating neurological disorders

Global Gene Expression Profiling of Healthy Human Brain and Its Application in Studying Neurological Disorders

Global Gene Expression Profiling of Healthy Human Brain and Its Application in Studying Neurological Disorders
Title Global Gene Expression Profiling of Healthy Human Brain and Its Application in Studying Neurological Disorders PDF eBook
Author Simarjeet K. Negi
Publisher
Pages 120
Release 2016
Genre
ISBN

Download Global Gene Expression Profiling of Healthy Human Brain and Its Application in Studying Neurological Disorders Book in PDF, Epub and Kindle

The human brain is the most complex structure known to mankind and one of the greatest challenges in modern biology is to understand how it is built and organized. The power of the brain arises from its variety of cells and structures, and ultimately where and when different genes are switched on and off throughout the brain tissue. In other words, brain function depends on the precise regulation of gene expression in its sub-anatomical structures. But, our understanding of the complexity and dynamics of the transcriptome of the human brain is still incomplete. To fill in the need, we designed a gene expression model that accurately defines the consistent blueprint of the brain transcriptome; thereby, identifying the core brain specific transcriptional processes conserved across individuals. Functionally characterizing this model would provide profound insights into the transcriptional landscape, biological pathways and the expression distribution of neurotransmitter systems. Here, in this dissertation we developed an expression model by capturing the similarly expressed gene patterns across congruently annotated brain structures in six individual brains by using data from the Allen Brain Atlas (ABA). We found that 84% of genes are expressed in at least one of the 190 brain structures. By employing hierarchical clustering we were able to show that distinct structures of a bigger brain region can cluster together while still retaining their expression identity. Further, weighted correlation network analysis identified 19 robust modules of coexpressing genes in the brain that demonstrated a wide range of functional associations. Since signatures of local phenomena can be masked by larger signatures, we performed local analysis on each distinct brain structure. Pathway and gene ontology enrichment analysis on these structures showed, striking enrichment for brain region specific processes. Besides, we also mapped the structural distribution of the gene expression profiles of genes associated with major neurotransmission systems in the human. We also postulated the utility of healthy brain tissue gene expression to predict potential genes involved in a neurological disorder, in the absence of data from diseased tissues. To this end, we developed a supervised classification model, which achieved an accuracy of 84% and an AUC (Area Under the Curve) of 0.81 from ROC plots, for predicting autism-implicated genes using the healthy expression model as the baseline. This study represents the first use of healthy brain gene expression to predict the scope of genes in autism implication and this generic methodology can be applied to predict genes involved in other neurological disorders.