Regularity and Approximability of Electronic Wave Functions
Title | Regularity and Approximability of Electronic Wave Functions PDF eBook |
Author | Harry Yserentant |
Publisher | Springer |
Pages | 194 |
Release | 2010-05-19 |
Genre | Mathematics |
ISBN | 3642122485 |
The electronic Schrodi ̈ nger equation describes the motion of N electrons under Coulomb interaction forces in a eld of clamped nuclei. Solutions of this equation depend on 3N variables, three spatial dimensions for each electron. Approxim- ing the solutions is thus inordinately challenging, and it is conventionally believed that a reduction to simpli ed models, such as those of the Hartree-Fock method or density functional theory, is the only tenable approach. This book seeks to c- vince the reader that this conventional wisdom need not be ironclad: the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of one or two electrons. The present notes arose from lectures that I gave in Berlin during the academic year 2008/09 to introduce beginning graduate students of mathematics into this subject. They are kept on an intermediate level that should be accessible to an audience of this kind as well as to physicists and theoretical chemists with a c- responding mathematical training.
Domain Decomposition Methods in Science and Engineering XX
Title | Domain Decomposition Methods in Science and Engineering XX PDF eBook |
Author | Randolph Bank |
Publisher | Springer Science & Business Media |
Pages | 702 |
Release | 2013-07-03 |
Genre | Mathematics |
ISBN | 3642352758 |
These are the proceedings of the 20th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linearor nonlinear systems of algebraic equations that arise when various problems in continuum mechanics are discretized using finite elements. They are designed for massively parallel computers and take the memory hierarchy of such systems in mind. This is essential for approaching peak floating point performance. There is an increasingly well developed theory whichis having a direct impact on the development and improvements of these algorithms.
Hyperbolic Cross Approximation
Title | Hyperbolic Cross Approximation PDF eBook |
Author | Dinh Dũng |
Publisher | Springer |
Pages | 222 |
Release | 2018-11-02 |
Genre | Mathematics |
ISBN | 3319922408 |
This book provides a systematic survey of classical and recent results on hyperbolic cross approximation. Motivated by numerous applications, the last two decades have seen great success in studying multivariate approximation. Multivariate problems have proven to be considerably more difficult than their univariate counterparts, and recent findings have established that multivariate mixed smoothness classes play a fundamental role in high-dimensional approximation. The book presents essential findings on and discussions of linear and nonlinear approximations of the mixed smoothness classes. Many of the important open problems explored here will provide both students and professionals with inspirations for further research.
Multivariate Approximation
Title | Multivariate Approximation PDF eBook |
Author | V. Temlyakov |
Publisher | Cambridge University Press |
Pages | 552 |
Release | 2018-07-19 |
Genre | Mathematics |
ISBN | 1108608639 |
This self-contained, systematic treatment of multivariate approximation begins with classical linear approximation, and moves on to contemporary nonlinear approximation. It covers substantial new developments in the linear approximation theory of classes with mixed smoothness, and shows how it is directly related to deep problems in other areas of mathematics. For example, numerical integration of these classes is closely related to discrepancy theory and to nonlinear approximation with respect to special redundant dictionaries, and estimates of the entropy numbers of classes with mixed smoothness are closely related to (in some cases equivalent to) the Small Ball Problem from probability theory. The useful background material included in the book makes it accessible to graduate students. Researchers will find that the many open problems in the theory outlined in the book provide helpful directions and guidance for their own research in this exciting and active area.
Tensor Numerical Methods in Scientific Computing
Title | Tensor Numerical Methods in Scientific Computing PDF eBook |
Author | Boris N. Khoromskij |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 382 |
Release | 2018-06-11 |
Genre | Mathematics |
ISBN | 311036591X |
The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green’s and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations
Numerical Analysis meets Machine Learning
Title | Numerical Analysis meets Machine Learning PDF eBook |
Author | |
Publisher | Elsevier |
Pages | 590 |
Release | 2024-06-13 |
Genre | Mathematics |
ISBN | 0443239851 |
Numerical Analysis Meets Machine Learning series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Numerical Analysis series - Updated release includes the latest information on the Numerical Analysis Meets Machine Learning
Many-Electron Approaches in Physics, Chemistry and Mathematics
Title | Many-Electron Approaches in Physics, Chemistry and Mathematics PDF eBook |
Author | Volker Bach |
Publisher | Springer |
Pages | 410 |
Release | 2014-07-01 |
Genre | Science |
ISBN | 3319063790 |
This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspective. In the context of studying many-electron systems Computer Science, Chemistry, Mathematics and Physics are all intimately interconnected. However, beyond a handful of communities working at the interface between these disciplines, there is still a marked separation of subjects. This book seeks to offer a common platform for possible exchanges between the various fields and to introduce the reader to perspectives for potential further developments across the disciplines. The rapid advances of modern technology will inevitably require substantial improvements in the approaches currently used, which will in turn make exchanges between disciplines indispensable. In essence this book is one of the very first attempts at an interdisciplinary approach to the many-electron problem.