An Introduction to Regression Graphics

An Introduction to Regression Graphics
Title An Introduction to Regression Graphics PDF eBook
Author R. Dennis Cook
Publisher John Wiley & Sons
Pages 282
Release 2009-09-25
Genre Mathematics
ISBN 0470317701

Download An Introduction to Regression Graphics Book in PDF, Epub and Kindle

Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.

Regression with Graphics

Regression with Graphics
Title Regression with Graphics PDF eBook
Author Lawrence C. Hamilton
Publisher Brooks/Cole
Pages 388
Release 1992
Genre Mathematics
ISBN

Download Regression with Graphics Book in PDF, Epub and Kindle

This text demonstrates how computing power has expanded the role of graphics in analyzing, exploring, and experimenting with raw data. It is primarily intended for students whose research requires more than an introductory statistics course, but who may not have an extensive background in rigorous mathematics. It's also suitable for courses with students of varying mathematical abilities. Hamilton provides students with a practical, realistic, and graphical approach to regression analysis so that they are better prepared to solve real, sometimes messy problems. For students and professors who prefer a heavier mathematical emphasis, the author has included optional sections throughout the text where the formal, mathematical development of the material is explained in greater detail. REGRESSION WITH GRAPHICS is appropriate for use with any (or no) statistical computer package. However, Hamilton used STAT A in the development of the text due to its ease of application and sophisticated graphics capabilities. (STATA is available in a student package from Duxbury including a tutorial by the same author: Hamilton, STATISTICS WITH STAT A, 5.0, 1998; ISBN: 0-534-31874-6.)

Regression Graphics

Regression Graphics
Title Regression Graphics PDF eBook
Author R. Dennis Cook
Publisher John Wiley & Sons
Pages 378
Release 2009-09-25
Genre Mathematics
ISBN 0470317779

Download Regression Graphics Book in PDF, Epub and Kindle

An exploration of regression graphics through computer graphics. Recent developments in computer technology have stimulated new and exciting uses for graphics in statistical analyses. Regression Graphics, one of the first graduate-level textbooks on the subject, demonstrates how statisticians, both theoretical and applied, can use these exciting innovations. After developing a relatively new regression context that requires few scope-limiting conditions, Regression Graphics guides readers through the process of analyzing regressions graphically and assessing and selecting models. This innovative reference makes use of a wide range of graphical tools, including 2D and 3D scatterplots, 3D binary response plots, and scatterplot matrices. Supplemented by a companion ftp site, it features numerous data sets and applied examples that are used to elucidate the theory. Other important features of this book include: * Extensive coverage of a relatively new regression context based on dimension-reduction subspaces and sufficient summary plots * Graphical regression, an iterative visualization process for constructing sufficient regression views * Graphics for regressions with a binary response * Graphics for model assessment, including residual plots * Net-effects plots for assessing predictor contributions * Graphics for predictor and response transformations * Inverse regression methods * Access to a Web site of supplemental plots, data sets, and 3D color displays. An ideal text for students in graduate-level courses on statistical analysis, Regression Graphics is also an excellent reference for professional statisticians.

Applied Regression Including Computing and Graphics

Applied Regression Including Computing and Graphics
Title Applied Regression Including Computing and Graphics PDF eBook
Author R. Dennis Cook
Publisher John Wiley & Sons
Pages 632
Release 2009-09-25
Genre Mathematics
ISBN 0470317787

Download Applied Regression Including Computing and Graphics Book in PDF, Epub and Kindle

A step-by-step guide to computing and graphics in regression analysis In this unique book, leading statisticians Dennis Cook and Sanford Weisberg expertly blend regression fundamentals and cutting-edge graphical techniques. They combine and up- date most of the material from their widely used earlier work, An Introduction to Regression Graphics, and Weisberg's Applied Linear Regression; incorporate the latest in statistical graphics, computing, and regression models; and wind up with a modern, fully integrated approach to one of the most important tools of data analysis. In 23 concise, easy-to-digest chapters, the authors present:? A wealth of simple 2D and 3D graphical techniques, helping visualize results through graphs * An improved version of the user-friendly Arc software, which lets readers promptly implement new ideas * Complete coverage of regression models, including logistic regression and generalized linear models * More than 300 figures, easily reproducible on the computer * Numerous examples and problems based on real data * A companion Web site featuring free software and advice, available at www.wiley.com/mathem atics Accessible, self-contained, and fully referenced, Applied Regression Including Computing and Graphics assumes only a first course in basic statistical methods and provides a bona fide user manual for the Arc software. It is an invaluable resource for anyone interested in learning how to analyze regression problems with confidence and depth.

Regression Graphics

Regression Graphics
Title Regression Graphics PDF eBook
Author R. Dennis Cook
Publisher John Wiley & Sons
Pages 380
Release 1998-09-30
Genre Mathematics
ISBN 9780471193654

Download Regression Graphics Book in PDF, Epub and Kindle

Zur graphischen Präsentation von Regressionsdaten gibt es seit dem Vormarsch der Computertechnik vielfältige neue Möglichkeiten, die über die klassischen Ansätze hinausgehen. Der Autor betritt mit seinen Ideen häufig Neuland; er illustriert sie mit zahlreichen Beispielen, Diagrammen und Abbildungen (die entsprechenden 3D- und Farbversionen sind über Internet abrufbar). (11/98)

Applied Regression Modeling

Applied Regression Modeling
Title Applied Regression Modeling PDF eBook
Author Iain Pardoe
Publisher John Wiley & Sons
Pages 319
Release 2013-01-07
Genre Mathematics
ISBN 1118345045

Download Applied Regression Modeling Book in PDF, Epub and Kindle

Praise for the First Edition "The attention to detail is impressive. The book is very well written and the author is extremely careful with his descriptions . . . the examples are wonderful." —The American Statistician Fully revised to reflect the latest methodologies and emerging applications, Applied Regression Modeling, Second Edition continues to highlight the benefits of statistical methods, specifically regression analysis and modeling, for understanding, analyzing, and interpreting multivariate data in business, science, and social science applications. The author utilizes a bounty of real-life examples, case studies, illustrations, and graphics to introduce readers to the world of regression analysis using various software packages, including R, SPSS, Minitab, SAS, JMP, and S-PLUS. In a clear and careful writing style, the book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, and Bayesian modeling. In addition, the Second Edition features clarification and expansion of challenging topics, such as: Transformations, indicator variables, and interaction Testing model assumptions Nonconstant variance Autocorrelation Variable selection methods Model building and graphical interpretation Throughout the book, datasets and examples have been updated and additional problems are included at the end of each chapter, allowing readers to test their comprehension of the presented material. In addition, a related website features the book's datasets, presentation slides, detailed statistical software instructions, and learning resources including additional problems and instructional videos. With an intuitive approach that is not heavy on mathematical detail, Applied Regression Modeling, Second Edition is an excellent book for courses on statistical regression analysis at the upper-undergraduate and graduate level. The book also serves as a valuable resource for professionals and researchers who utilize statistical methods for decision-making in their everyday work.

Regression Diagnostics

Regression Diagnostics
Title Regression Diagnostics PDF eBook
Author John Fox
Publisher SAGE Publications
Pages 138
Release 2019-12-09
Genre Social Science
ISBN 1544375212

Download Regression Diagnostics Book in PDF, Epub and Kindle

Regression diagnostics are methods for determining whether a regression model that has been fit to data adequately represents the structure of the data. For example, if the model assumes a linear (straight-line) relationship between the response and an explanatory variable, is the assumption of linearity warranted? Regression diagnostics not only reveal deficiencies in a regression model that has been fit to data but in many instances may suggest how the model can be improved. The Second Edition of this bestselling volume by John Fox considers two important classes of regression models: the normal linear regression model (LM), in which the response variable is quantitative and assumed to have a normal distribution conditional on the values of the explanatory variables; and generalized linear models (GLMs) in which the conditional distribution of the response variable is a member of an exponential family. R code and data sets for examples within the text can be found on an accompanying website.