Recurrence in Topological Dynamics
Title | Recurrence in Topological Dynamics PDF eBook |
Author | Ethan Akin |
Publisher | Springer Science & Business Media |
Pages | 292 |
Release | 1997-07-31 |
Genre | Mathematics |
ISBN | 9780306455506 |
This groundbreaking volume is the first to elaborate the theory of set families as a tool for studying the phenomenon of recurrence. The theory is implicit in such seminal works as Hillel Furstenberg's Recurrence in Ergodic Theory and Combinational Number Theory, but Ethan Akin's study elaborates it in detail, defining such elements of theory as: open families of special subsets the unification of several ideas associated with transitivity, ergodicity, and mixing the Ellis theory of enveloping semigroups for compact dynamical systems and new notions of equicontinuity, distality, and rigidity.
Recurrence in Topological Dynamics
Title | Recurrence in Topological Dynamics PDF eBook |
Author | Ethan Akin |
Publisher | Springer Science & Business Media |
Pages | 271 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475726686 |
In the long run of a dynamical system, after transient phenomena have passed away, what remains is recurrence. An orbit is recurrent when it returns repeatedly to each neighborhood of its initial position. We can sharpen the concept by insisting that the returns occur with at least some prescribed frequency. For example, an orbit lies in some minimal subset if and only if it returns almost periodically to each neighborhood of the initial point. That is, each return time set is a so-called syndetic subset ofT= the positive reals (continuous time system) or T = the positive integers (discrete time system). This is a prototype for many of the results in this book. In particular, frequency is measured by membership in a family of subsets of the space modeling time, in this case the family of syndetic subsets of T. In applying dynamics to combinatorial number theory, Furstenberg introduced a large number of such families. Our first task is to describe explicitly the calculus of families implicit in Furstenberg's original work and in the results which have proliferated since. There are general constructions on families, e. g. , the dual of a family and the product of families. Other natural constructions arise from a topology or group action on the underlying set. The foundations are laid, in perhaps tedious detail, in Chapter 2. The family machinery is then applied in Chapters 3 and 4 to describe family versions of recurrence, topological transitivity, distality and rigidity.
Recurrence in Ergodic Theory and Combinatorial Number Theory
Title | Recurrence in Ergodic Theory and Combinatorial Number Theory PDF eBook |
Author | Harry Furstenberg |
Publisher | Princeton University Press |
Pages | 216 |
Release | 2014-07-14 |
Genre | Mathematics |
ISBN | 1400855160 |
Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Topological Dynamics
Title | Topological Dynamics PDF eBook |
Author | Walter Helbig Gottschalk |
Publisher | American Mathematical Soc. |
Pages | 184 |
Release | 1955-01-01 |
Genre | Mathematics |
ISBN | 9780821874691 |
Topological dynamics is the study of transformation groups with respect to those topological properties whose prototype occurred in classical dynamics. In this volume, Part One contains the general theory. Part Two contains notable examples of flows which have contributed to the general theory of topological dynamics and which have in turn have been illuminated by the general theory of topological dynamics.
Topological Dynamical Systems
Title | Topological Dynamical Systems PDF eBook |
Author | Jan Vries |
Publisher | Walter de Gruyter |
Pages | 516 |
Release | 2014-01-31 |
Genre | Mathematics |
ISBN | 3110342405 |
There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.
The General Topology of Dynamical Systems
Title | The General Topology of Dynamical Systems PDF eBook |
Author | Ethan Akin |
Publisher | American Mathematical Soc. |
Pages | 273 |
Release | 1993 |
Genre | Mathematics |
ISBN | 0821849328 |
Recent work in dynamical systems theory has both highlighted certain topics in the pre-existing subject of topological dynamics (such as the construction of Lyapunov functions and various notions of stability) and also generated new concepts and results. This book collects these results, both old and new, and organises them into a natural foundation for all aspects of dynamical systems theory.
Topological and Symbolic Dynamics
Title | Topological and Symbolic Dynamics PDF eBook |
Author | Petr Kůrka |
Publisher | Société Mathématique de France |
Pages | 336 |
Release | 2003 |
Genre | Symbolic dynamics |
ISBN |
A dynamical system is a continuous self-map of a compact metric space. Topological dynamics studies the iterations of such a map, or equivalently, the trajectories of points of the state space. The basic concepts of topological dynamics are minimality, transitivity, recurrence, shadowing property, stability, equicontinuity, sensitivity, attractors, and topological entropy. Symbolic dynamics studies dynamical systems whose state spaces are zero-dimensional and consist of sequences of symbols. The main classes of symbolic dynamical systems are adding machines, subshifts of finite type, sofic subshifts, Sturmian, substitutive and Toeplitz subshifts, and cellular automata.