Residuated Lattices: An Algebraic Glimpse at Substructural Logics

Residuated Lattices: An Algebraic Glimpse at Substructural Logics
Title Residuated Lattices: An Algebraic Glimpse at Substructural Logics PDF eBook
Author Nikolaos Galatos
Publisher Elsevier
Pages 532
Release 2007-04-25
Genre Mathematics
ISBN 0080489648

Download Residuated Lattices: An Algebraic Glimpse at Substructural Logics Book in PDF, Epub and Kindle

The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric.

Hiroakira Ono on Substructural Logics

Hiroakira Ono on Substructural Logics
Title Hiroakira Ono on Substructural Logics PDF eBook
Author Nikolaos Galatos
Publisher Springer Nature
Pages 382
Release 2021-12-13
Genre Philosophy
ISBN 3030769208

Download Hiroakira Ono on Substructural Logics Book in PDF, Epub and Kindle

This volume is dedicated to Hiroakira Ono life’s work on substructural logics. Chapters, written by well-established academics, cover topics related to universal algebra, algebraic logic and the Full Lambek calculus; the book includes a short biography about Hiroakira Ono. The book starts with detailed surveys on universal algebra, abstract algebraic logic, topological dualities, and connections to computer science. It further contains specialised contributions on connections to formal languages (recognizability in residuated lattices and connections to the finite embedding property), covering systems for modal substructural logics, results on the existence and disjunction properties and finally a study of conservativity of expansions. This book will be primarily of interest to researchers working in algebraic and non-classical logic.

Trends in Logic

Trends in Logic
Title Trends in Logic PDF eBook
Author Vincent F. Hendricks
Publisher Springer Science & Business Media
Pages 387
Release 2013-03-09
Genre Philosophy
ISBN 9401735980

Download Trends in Logic Book in PDF, Epub and Kindle

In 1953, exactly 50 years ago to this day, the first volume of Studia Logica appeared under the auspices of The Philosophical Committee of The Polish Academy of Sciences. Now, five decades later the present volume is dedicated to a celebration of this 50th Anniversary of Studia Logica. The volume features a series of papers by distinguished scholars reflecting both the aim and scope of this journal for symbolic logic.

Residuated Structures in Algebra and Logic

Residuated Structures in Algebra and Logic
Title Residuated Structures in Algebra and Logic PDF eBook
Author George Metcalfe
Publisher American Mathematical Society
Pages 282
Release 2023-11-06
Genre Mathematics
ISBN 1470469855

Download Residuated Structures in Algebra and Logic Book in PDF, Epub and Kindle

This book is an introduction to residuated structures, viewed as a common thread binding together algebra and logic. The framework includes well-studied structures from classical abstract algebra such as lattice-ordered groups and ideals of rings, as well as structures serving as algebraic semantics for substructural and other non-classical logics. Crucially, classes of these structures are studied both algebraically, yielding a rich structure theory along the lines of Conrad's program for lattice-ordered groups, and algorithmically, via analytic sequent or hypersequent calculi. These perspectives are related using a natural notion of equivalence for consequence relations that provides a bridge offering benefits to both sides. Algorithmic methods are used to establish properties like decidability, amalgamation, and generation by subclasses, while new insights into logical systems are obtained by studying associated classes of structures. The book is designed to serve the purposes of novices and experts alike. The first three chapters provide a gentle introduction to the subject, while subsequent chapters provide a state-of-the-art account of recent developments in the field.

Philosophical Logic: Current Trends in Asia

Philosophical Logic: Current Trends in Asia
Title Philosophical Logic: Current Trends in Asia PDF eBook
Author Syraya Chin-Mu Yang
Publisher Springer
Pages 308
Release 2017-11-25
Genre Philosophy
ISBN 9811063559

Download Philosophical Logic: Current Trends in Asia Book in PDF, Epub and Kindle

This volume brings together a group of logic-minded philosophers and philosophically oriented logicians, mainly from Asia, to address a variety of logical and philosophical topics of current interest, offering a representative cross-section of the philosophical logic landscape in early 21st-century Asia. It surveys a variety of fields, including modal logic, epistemic logic, formal semantics, decidability and mereology. The book proposes new approaches and constructs more powerful frameworks, such as cover theory, an algebraic approach to cut-elimination, and a Boolean approach to causal discovery, to name but a few. Readers may find a wide range of applications of these original works in current research of philosophical logic, especially in the structural and conceptual analysis of some significant semantic properties and formal systems. The variety of topics and issues discussed here will appeal to readers from a broad spectrum of disciplines, ranging from mathematical/philosophical logic, computing science, cognitive science and artificial intelligence, to linguistics, game theory and beyond.

Algebraic Perspectives on Substructural Logics

Algebraic Perspectives on Substructural Logics
Title Algebraic Perspectives on Substructural Logics PDF eBook
Author Davide Fazio
Publisher Springer Nature
Pages 193
Release 2020-11-07
Genre Philosophy
ISBN 303052163X

Download Algebraic Perspectives on Substructural Logics Book in PDF, Epub and Kindle

This volume presents the state of the art in the algebraic investigation into substructural logics. It features papers from the workshop AsubL (Algebra & Substructural Logics - Take 6). Held at the University of Cagliari, Italy, this event is part of the framework of the Horizon 2020 Project SYSMICS: SYntax meets Semantics: Methods, Interactions, and Connections in Substructural logics. Substructural logics are usually formulated as Gentzen systems that lack one or more structural rules. They have been intensively studied over the past two decades by logicians of various persuasions. These researchers include mathematicians, philosophers, linguists, and computer scientists. Substructural logics are applicable to the mathematical investigation of such processes as resource-conscious reasoning, approximate reasoning, type-theoretical grammar, and other focal notions in computer science. They also apply to epistemology, economics, and linguistics. The recourse to algebraic methods -- or, better, the fecund interplay of algebra and proof theory -- has proved useful in providing a unifying framework for these investigations. The AsubL series of conferences, in particular, has played an important role in these developments. This collection will appeal to students and researchers with an interest in substructural logics, abstract algebraic logic, residuated lattices, proof theory, universal algebra, and logical semantics.

Relations: Concrete, Abstract, And Applied - An Introduction

Relations: Concrete, Abstract, And Applied - An Introduction
Title Relations: Concrete, Abstract, And Applied - An Introduction PDF eBook
Author Herbert Toth
Publisher World Scientific
Pages 573
Release 2020-06-22
Genre Mathematics
ISBN 9811220360

Download Relations: Concrete, Abstract, And Applied - An Introduction Book in PDF, Epub and Kindle

The book is intended as an invitation to the topic of relations on a rather general basis. It fills the gap between the basic knowledge offered in countless introductory papers and books (usually comprising orders and equivalences) and the highly specialized monographs on mainly relation algebras, many-valued (fuzzy) relations, or graphs. This is done not only by presenting theoretical results but also by giving hints to some of the many interesting application areas (also including their respective theoretical basics).This book is a new — and the first of its kind — compilation of known results on binary relations. It offers relational concepts in both reasonable depth and broadness, and also provides insight into the vast diversity of theoretical results as well as application possibilities beyond the commonly known examples.This book is unique by the spectrum of the topics it handles. As indicated in its title these are: