Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws
Title | Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws PDF eBook |
Author | Rainer Ansorge |
Publisher | Springer Science & Business Media |
Pages | 325 |
Release | 2012-09-14 |
Genre | Technology & Engineering |
ISBN | 3642332218 |
In January 2012 an Oberwolfach workshop took place on the topic of recent developments in the numerics of partial differential equations. Focus was laid on methods of high order and on applications in Computational Fluid Dynamics. The book covers most of the talks presented at this workshop.
Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws
Title | Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws PDF eBook |
Author | François Bouchut |
Publisher | Springer Science & Business Media |
Pages | 148 |
Release | 2004-06-25 |
Genre | Mathematics |
ISBN | 9783764366650 |
The schemes are analyzed regarding their nonlinear stability Recently developed entropy schemes are presented A formalism is introduced for source terms
Numerical Methods for Conservation Laws
Title | Numerical Methods for Conservation Laws PDF eBook |
Author | LEVEQUE |
Publisher | Birkhäuser |
Pages | 221 |
Release | 2013-11-11 |
Genre | Science |
ISBN | 3034851162 |
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Numerical Methods for Conservation Laws
Title | Numerical Methods for Conservation Laws PDF eBook |
Author | Jan S. Hesthaven |
Publisher | SIAM |
Pages | 571 |
Release | 2018-01-30 |
Genre | Science |
ISBN | 1611975107 |
Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.
Numerical Approximation of Hyperbolic Systems of Conservation Laws
Title | Numerical Approximation of Hyperbolic Systems of Conservation Laws PDF eBook |
Author | Edwige Godlewski |
Publisher | Springer Nature |
Pages | 846 |
Release | 2021-08-28 |
Genre | Mathematics |
ISBN | 1071613448 |
This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.
Numerical Analysis and Optimization
Title | Numerical Analysis and Optimization PDF eBook |
Author | Mehiddin Al-Baali |
Publisher | Springer |
Pages | 351 |
Release | 2015-07-16 |
Genre | Mathematics |
ISBN | 3319176897 |
Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, optimal control, approximation theory, applied mathematics, algorithms and software developments, derivative free optimization methods and programming models. The volume also examines challenging applications to various types of computational optimization methods which usually occur in statistics, econometrics, finance, physics, medicine, biology, engineering and industrial sciences.
Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects
Title | Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects PDF eBook |
Author | Jürgen Fuhrmann |
Publisher | Springer |
Pages | 450 |
Release | 2014-05-12 |
Genre | Mathematics |
ISBN | 3319056840 |
The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.