Recent Advances In Stochastic Modeling And Data Analysis
Title | Recent Advances In Stochastic Modeling And Data Analysis PDF eBook |
Author | Christos H Skiadas |
Publisher | World Scientific |
Pages | 669 |
Release | 2007-11-16 |
Genre | Mathematics |
ISBN | 9814474479 |
This volume presents the most recent applied and methodological issues in stochastic modeling and data analysis. The contributions cover various fields such as stochastic processes and applications, data analysis methods and techniques, Bayesian methods, biostatistics, econometrics, sampling, linear and nonlinear models, networks and queues, survival analysis, and time series. The volume presents new results with potential for solving real-life problems and provides novel methods for solving these problems by analyzing the relevant data. The use of recent advances in different fields is emphasized, especially new optimization and statistical methods, data warehouse, data mining and knowledge systems, neural computing, and bioinformatics.
Recent Advances in Stochastic Operations Research
Title | Recent Advances in Stochastic Operations Research PDF eBook |
Author | Tadashi Dohi |
Publisher | World Scientific |
Pages | 325 |
Release | 2007 |
Genre | Business & Economics |
ISBN | 9812706682 |
Operations research uses quantitative models to analyze and predict the behavior of systems and to provide information for decision makers. Two key concepts in operations research are optimization and uncertainty. This volume consists of a collection of peer reviewed papers from the International Workshop on Recent Advances in Stochastic Operations Research (RASOR 2005), August 25OCo26, 2005, Canmore, Alberta, Canada. In particular, the book focusses on models in stochastic operations research, including queueing models, inventory models, financial engineering models, reliability models, and simulations models."
Stochastic Models, Statistics and Their Applications
Title | Stochastic Models, Statistics and Their Applications PDF eBook |
Author | Ansgar Steland |
Publisher | Springer |
Pages | 479 |
Release | 2015-02-04 |
Genre | Mathematics |
ISBN | 3319138812 |
This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.
Recent Advances in Stochastic Operations Research II
Title | Recent Advances in Stochastic Operations Research II PDF eBook |
Author | Tadashi Dohi |
Publisher | World Scientific |
Pages | 312 |
Release | 2009 |
Genre | Business & Economics |
ISBN | 9812791671 |
Operations research uses quantitative models to analyze and predict the behavior of systems and to provide information for decision makers. Two key concepts in such research are optimization and uncertainty. Typical models in stochastic operations research include queueing models, inventory models, financial engineering models, reliability models, and simulation models. This book contains a collection of peer-reviewed papers from the International Workshop on Recent Advances in Stochastic Operations Research (2007 RASOR Nanzan) held on March 5OCo6, 2007, at Nanzan University, Nagoya, Japan. It enables advanced readers to understand the recent topics and results in stochastic operations research.
The Data Science Handbook
Title | The Data Science Handbook PDF eBook |
Author | Field Cady |
Publisher | John Wiley & Sons |
Pages | 420 |
Release | 2017-02-28 |
Genre | Mathematics |
ISBN | 1119092949 |
A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.
An Introduction to Stochastic Modeling
Title | An Introduction to Stochastic Modeling PDF eBook |
Author | Howard M. Taylor |
Publisher | Academic Press |
Pages | 410 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Recent Development In Stochastic Dynamics And Stochastic Analysis
Title | Recent Development In Stochastic Dynamics And Stochastic Analysis PDF eBook |
Author | Jinqiao Duan |
Publisher | World Scientific |
Pages | 306 |
Release | 2010-02-08 |
Genre | Mathematics |
ISBN | 981446760X |
Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also to scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics.The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.