Recent Advances in Statistical Research and Data Analysis
Title | Recent Advances in Statistical Research and Data Analysis PDF eBook |
Author | Y. Baba |
Publisher | Springer Science & Business Media |
Pages | 133 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 4431685448 |
Recent Advances in Statistical Research and Data Analysis is a collection of papers presented at the symposium of the same name, held in Tokyo by the Center for Information on Statistical Science of the Institute of Statistical Mathematics (ISM). Under the auspices of the Ministry of Education, Culture, Sports, Science and Technology of Japan, the ISM has created visiting professorships and organized symposia to promote collaboration between researchers from Japan and those from other countries. At the symposium on recent advances in statistical research and data analysis, the keynote speaker was Visiting Professor Anthony J. Hayter. This book includes Prof. Hayter's address as well as papers from special lectures that were presented at the symposium. All the contributions are concerned with theory and methodology for real data and thus will benefit researchers, students, and others engaged in data analysis.
Advances in Statistical Methodologies and Their Application to Real Problems
Title | Advances in Statistical Methodologies and Their Application to Real Problems PDF eBook |
Author | Tsukasa Hokimoto |
Publisher | BoD – Books on Demand |
Pages | 327 |
Release | 2017-04-26 |
Genre | Mathematics |
ISBN | 953513101X |
In recent years, statistical techniques and methods for data analysis have advanced significantly in a wide range of research areas. These developments enable researchers to analyze increasingly large datasets with more flexibility and also more accurately estimate and evaluate the phenomena they study. We recognize the value of recent advances in data analysis techniques in many different research fields. However, we also note that awareness of these different statistical and probabilistic approaches may vary, owing to differences in the datasets typical of different research fields. This book provides a cross-disciplinary forum for exploring the variety of new data analysis techniques emerging from different fields.
Advanced Statistical Methods in Data Science
Title | Advanced Statistical Methods in Data Science PDF eBook |
Author | Ding-Geng Chen |
Publisher | Springer |
Pages | 229 |
Release | 2016-11-30 |
Genre | Mathematics |
ISBN | 9811025940 |
This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a full chapter for this book in order to disseminate the findings and promote further research collaborations in this area. This timely book offers new methods that impact advanced statistical model development in big-data sciences.
Advanced Statistics in Research
Title | Advanced Statistics in Research PDF eBook |
Author | Larry Hatcher |
Publisher | Shadow Finch Media LLC |
Pages | 632 |
Release | 2013 |
Genre | Mathematical statistics |
ISBN | 9780985867003 |
"Advanced Statistics in Research: Reading, Understanding, and Writing Up Data Analysis Results" is the simple, nontechnical introduction to the most complex multivariate statistics presented in empirical research articles. "wwwStatsInResearch.com, " is a companion website that provides free sample chapters, exercises, and PowerPoint slides for students and teachers. A free 600-item test bank is available to instructors. "Advanced Statistics in Research" does not show how to "perform" statistical procedures--it shows how to read, understand, and interpret them, as they are typically presented in journal articles and research reports. It demystifies the sophisticated statistics that stop most readers cold: multiple regression, logistic regression, discriminant analysis, ANOVA, ANCOVA, MANOVA, factor analysis, path analysis, structural equation modeling, meta-analysis--and more. "Advanced Statistics in Research" assumes that you have never had a course in statistics. It begins at the beginning, with research design, central tendency, variability, z scores, and the normal curve. You will learn (or re-learn) the big-three results that are common to most procedures: statistical significance, confidence intervals, and effect size. Step-by-step, each chapter gently builds on earlier concepts. Matrix algebra is avoided, and complex topics are explained using simple, easy-to-understand examples. "Need help writing up your results?" Advanced Statistics in Research shows how data-analysis results can be summarized in text, tables, and figures according to APA format. You will see how to present the basics (e.g., means and standard deviations) as well as the advanced (e.g., factor patterns, post-hoc tests, path models, and more). "Advanced Statistics in Research" is appropriate as a textbook for graduate students and upper-level undergraduates (see supplementary materials at StatsInResearch.com). It also serves as a handy shelf reference for investigators and all consumers of research.
Recent Advances in Mathematical and Statistical Methods
Title | Recent Advances in Mathematical and Statistical Methods PDF eBook |
Author | D. Marc Kilgour |
Publisher | Springer |
Pages | 622 |
Release | 2018-11-04 |
Genre | Computers |
ISBN | 331999719X |
This book focuses on the recent development of methodologies and computation methods in mathematical and statistical modelling, computational science and applied mathematics. It emphasizes the development of theories and applications, and promotes interdisciplinary endeavour among mathematicians, statisticians, scientists, engineers and researchers from other disciplines. The book provides ideas, methods and tools in mathematical and statistical modelling that have been developed for a wide range of research fields, including medical, health sciences, biology, environmental science, engineering, physics and chemistry, finance, economics and social sciences. It presents original results addressing real-world problems. The contributions are products of a highly successful meeting held in August 2017 on the main campus of Wilfrid Laurier University, in Waterloo, Canada, the International Conference on Applied Mathematics, Modeling and Computational Science (AMMCS-2017). They make this book a valuable resource for readers interested not only in a broader overview of the methods, ideas and tools in mathematical and statistical approaches, but also in how they can attain valuable insights into problems arising in other disciplines.
Statistical Methods for Data Analysis in Particle Physics
Title | Statistical Methods for Data Analysis in Particle Physics PDF eBook |
Author | Luca Lista |
Publisher | Springer |
Pages | 268 |
Release | 2017-10-13 |
Genre | Science |
ISBN | 3319628402 |
This concise set of course-based notes provides the reader with the main concepts and tools needed to perform statistical analyses of experimental data, in particular in the field of high-energy physics (HEP). First, the book provides an introduction to probability theory and basic statistics, mainly intended as a refresher from readers’ advanced undergraduate studies, but also to help them clearly distinguish between the Frequentist and Bayesian approaches and interpretations in subsequent applications. More advanced concepts and applications are gradually introduced, culminating in the chapter on both discoveries and upper limits, as many applications in HEP concern hypothesis testing, where the main goal is often to provide better and better limits so as to eventually be able to distinguish between competing hypotheses, or to rule out some of them altogether. Many worked-out examples will help newcomers to the field and graduate students alike understand the pitfalls involved in applying theoretical concepts to actual data. This new second edition significantly expands on the original material, with more background content (e.g. the Markov Chain Monte Carlo method, best linear unbiased estimator), applications (unfolding and regularization procedures, control regions and simultaneous fits, machine learning concepts) and examples (e.g. look-elsewhere effect calculation).
Data Analysis for the Life Sciences with R
Title | Data Analysis for the Life Sciences with R PDF eBook |
Author | Rafael A. Irizarry |
Publisher | CRC Press |
Pages | 537 |
Release | 2016-10-04 |
Genre | Mathematics |
ISBN | 1498775861 |
This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.