Recent Advances in Numerical Methods for Hyperbolic PDE Systems
Title | Recent Advances in Numerical Methods for Hyperbolic PDE Systems PDF eBook |
Author | María Luz Muñoz-Ruiz |
Publisher | Springer Nature |
Pages | 269 |
Release | 2021-05-25 |
Genre | Mathematics |
ISBN | 3030728501 |
The present volume contains selected papers issued from the sixth edition of the International Conference "Numerical methods for hyperbolic problems" that took place in 2019 in Málaga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models. The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation.
Recent Advances in Numerical Methods for Partial Differential Equations and Applications
Title | Recent Advances in Numerical Methods for Partial Differential Equations and Applications PDF eBook |
Author | Xiaobing Feng |
Publisher | American Mathematical Soc. |
Pages | 194 |
Release | 2002 |
Genre | Mathematics |
ISBN | 082182970X |
This book is derived from lectures presented at the 2001 John H. Barrett Memorial Lectures at the University of Tennessee, Knoxville. The topic was computational mathematics, focusing on parallel numerical algorithms for partial differential equations, their implementation and applications in fluid mechanics and material science. Compiled here are articles from six of nine speakers. Each of them is a leading researcher in the field of computational mathematics and its applications. A vast area that has been coming into its own over the past 15 years, computational mathematics has experienced major developments in both algorithmic advances and applications to other fields. These developments have had profound implications in mathematics, science, engineering and industry. With the aid of powerful high performance computers, numerical simulation of physical phenomena is the only feasible method for analyzing many types of important phenomena, joining experimentation and theoretical analysis as the third method of scientific investigation. The three aspects: applications, theory, and computer implementation comprise a comprehensive overview of the topic. Leading lecturers were Mary Wheeler on applications, Jinchao Xu on theory, and David Keyes on computer implementation. Following the tradition of the Barrett Lectures, these in-depth articles and expository discussions make this book a useful reference for graduate students as well as the many groups of researchers working in advanced computations, including engineering and computer scientists.
Partial Differential Equations with Numerical Methods
Title | Partial Differential Equations with Numerical Methods PDF eBook |
Author | Stig Larsson |
Publisher | Springer Science & Business Media |
Pages | 263 |
Release | 2008-12-05 |
Genre | Mathematics |
ISBN | 3540887059 |
The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.
Analytic Methods for Partial Differential Equations
Title | Analytic Methods for Partial Differential Equations PDF eBook |
Author | G. Evans |
Publisher | Springer Science & Business Media |
Pages | 308 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1447103793 |
This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.
Mathematical Aspects of Numerical Solution of Hyperbolic Systems
Title | Mathematical Aspects of Numerical Solution of Hyperbolic Systems PDF eBook |
Author | A.G. Kulikovskii |
Publisher | CRC Press |
Pages | 555 |
Release | 2000-12-21 |
Genre | Mathematics |
ISBN | 1482273993 |
This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics,
High Performance Computing in Science and Engineering '21
Title | High Performance Computing in Science and Engineering '21 PDF eBook |
Author | Wolfgang E. Nagel |
Publisher | Springer Nature |
Pages | 516 |
Release | 2023-03-03 |
Genre | Computers |
ISBN | 3031179374 |
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2021. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
Numerical Approximation of Partial Differential Equations
Title | Numerical Approximation of Partial Differential Equations PDF eBook |
Author | Alfio Quarteroni |
Publisher | Springer Science & Business Media |
Pages | 551 |
Release | 2009-02-11 |
Genre | Mathematics |
ISBN | 3540852689 |
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).