Recent Advances in Evolutionary Computation for Combinatorial Optimization
Title | Recent Advances in Evolutionary Computation for Combinatorial Optimization PDF eBook |
Author | Carlos Cotta |
Publisher | Springer Science & Business Media |
Pages | 362 |
Release | 2008-08-26 |
Genre | Business & Economics |
ISBN | 3540708065 |
This cutting-edge volume presents recent advances in the area of metaheuristic combinatorial optimisation, with a special focus on evolutionary computation methods. Moreover, it addresses local search methods and hybrid approaches.
Recent Advances in Memetic Algorithms
Title | Recent Advances in Memetic Algorithms PDF eBook |
Author | William E. Hart |
Publisher | Springer |
Pages | 406 |
Release | 2006-06-22 |
Genre | Mathematics |
ISBN | 3540323635 |
Memetic algorithms are evolutionary algorithms that apply a local search process to refine solutions to hard problems. Memetic algorithms are the subject of intense scientific research and have been successfully applied to a multitude of real-world problems ranging from the construction of optimal university exam timetables, to the prediction of protein structures and the optimal design of space-craft trajectories. This monograph presents a rich state-of-the-art gallery of works on memetic algorithms. Recent Advances in Memetic Algorithms is the first book that focuses on this technology as the central topical matter. This book gives a coherent, integrated view on both good practice examples and new trends including a concise and self-contained introduction to memetic algorithms. It is a necessary read for postgraduate students and researchers interested in recent advances in search and optimization technologies based on memetic algorithms, but can also be used as complement to undergraduate textbooks on artificial intelligence.
Bioinspired Computation in Combinatorial Optimization
Title | Bioinspired Computation in Combinatorial Optimization PDF eBook |
Author | Frank Neumann |
Publisher | Springer Science & Business Media |
Pages | 215 |
Release | 2010-11-04 |
Genre | Mathematics |
ISBN | 3642165443 |
Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.
Evolutionary Optimization
Title | Evolutionary Optimization PDF eBook |
Author | Ruhul Sarker |
Publisher | Springer Science & Business Media |
Pages | 416 |
Release | 2002-01-31 |
Genre | Business & Economics |
ISBN | 0792376544 |
The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly adept for solving complex optimization problems. Moreover, they are characteristically more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. Hence, evolutionary computation techniques have dealt with complex optimization problems better than traditional optimization techniques although they can be applied to easy and simple problems where conventional techniques work well. Clearly there is a need for a volume that both reviews state-of-the-art evolutionary computation techniques, and surveys the most recent developments in their use for solving complex OR/MS problems. This volume on Evolutionary Optimization seeks to fill this need. Evolutionary Optimization is a volume of invited papers written by leading researchers in the field. All papers were peer reviewed by at least two recognized reviewers. The book covers the foundation as well as the practical side of evolutionary optimization.
Recent Advances in Swarm Intelligence and Evolutionary Computation
Title | Recent Advances in Swarm Intelligence and Evolutionary Computation PDF eBook |
Author | Xin-She Yang |
Publisher | Springer |
Pages | 295 |
Release | 2014-12-27 |
Genre | Technology & Engineering |
ISBN | 331913826X |
This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference for graduates, lecturers, engineers and researchers in computer science, evolutionary computing, artificial intelligence, machine learning, computational intelligence, data mining, engineering optimization and designs.
Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation
Title | Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation PDF eBook |
Author | Samuelson Hong, Wei-Chiang |
Publisher | IGI Global |
Pages | 357 |
Release | 2013-03-31 |
Genre | Computers |
ISBN | 1466636297 |
Evolutionary computation has emerged as a major topic in the scientific community as many of its techniques have successfully been applied to solve problems in a wide variety of fields. Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation provides comprehensive research on emerging theories and its aspects on intelligent computation. Particularly focusing on breaking trends in evolutionary computing, algorithms, and programming, this publication serves to support professionals, government employees, policy and decision makers, as well as students in this scientific field.
Evolutionary Computation in Combinatorial Optimization
Title | Evolutionary Computation in Combinatorial Optimization PDF eBook |
Author | Martin Middendorf |
Publisher | Springer |
Pages | 284 |
Release | 2013-03-12 |
Genre | Computers |
ISBN | 3642371981 |
This book constitutes the refereed proceedings of the 13th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2013, held in Vienna, Austria, in April 2013, colocated with the Evo* 2013 events EuroGP, EvoBIO, EvoMUSART, and EvoApplications. The 23 revised full papers presented were carefully reviewed and selected from 50 submissions. The papers present the latest research and discuss current developments and applications in metaheuristics - a paradigm to effectively solve difficult combinatorial optimization problems appearing in various industrial, economic, and scientific domains. Prominent examples of metaheuristics are ant colony optimization, evolutionary algorithms, greedy randomized adaptive search procedures, iterated local search, simulated annealing, tabu search, and variable neighborhood search. Applications include scheduling, timetabling, network design, transportation and distribution, vehicle routing, the travelling salesman problem, packing and cutting, satisfiability, and general mixed integer programming.