Harmonic Analysis of Spherical Functions on Real Reductive Groups
Title | Harmonic Analysis of Spherical Functions on Real Reductive Groups PDF eBook |
Author | Ramesh Gangolli |
Publisher | Springer Science & Business Media |
Pages | 379 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642729568 |
Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930's. However its full development did not begin until the 1950's when Gel'fand and Harish Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra's theory of spherical functions was essentially complete in the late 1950's, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on symmetric spaces, that is at the focus of this book. The fundamental questions of harmonic analysis on symmetric spaces involve an interplay of the geometric, analytical, and algebraic aspects of these spaces. They have therefore attracted a great deal of attention, and there have been many excellent expositions of the themes that are characteristic of this subject.
Real Reductive Groups
Title | Real Reductive Groups PDF eBook |
Author | Nolan R. Wallach |
Publisher | |
Pages | |
Release | 1988 |
Genre | Lie groups |
ISBN |
Representations of Algebraic Groups
Title | Representations of Algebraic Groups PDF eBook |
Author | Jens Carsten Jantzen |
Publisher | American Mathematical Soc. |
Pages | 594 |
Release | 2003 |
Genre | Mathematics |
ISBN | 082184377X |
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.
The Langlands Classification and Irreducible Characters for Real Reductive Groups
Title | The Langlands Classification and Irreducible Characters for Real Reductive Groups PDF eBook |
Author | J. Adams |
Publisher | Springer Science & Business Media |
Pages | 331 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 146120383X |
This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms.
Representations of Reductive Groups
Title | Representations of Reductive Groups PDF eBook |
Author | Roger W. Carter |
Publisher | Cambridge University Press |
Pages | 203 |
Release | 1998-09-03 |
Genre | Mathematics |
ISBN | 0521643252 |
This volume provides a very accessible introduction to the representation theory of reductive algebraic groups.
Random Walks on Reductive Groups
Title | Random Walks on Reductive Groups PDF eBook |
Author | Yves Benoist |
Publisher | Springer |
Pages | 319 |
Release | 2016-10-20 |
Genre | Mathematics |
ISBN | 3319477218 |
The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
Unitary Representations of Reductive Lie Groups
Title | Unitary Representations of Reductive Lie Groups PDF eBook |
Author | David A. Vogan |
Publisher | Princeton University Press |
Pages | 324 |
Release | 1987-10-21 |
Genre | Mathematics |
ISBN | 9780691084824 |
This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations.