Real Function Algebras
Title | Real Function Algebras PDF eBook |
Author | S.H. Kulkarni |
Publisher | CRC Press |
Pages | 201 |
Release | 2020-08-26 |
Genre | Mathematics |
ISBN | 1000105636 |
This self-contained reference/text presents a thorough account of the theory of real function algebras. Employing the intrinsic approach, avoiding the complexification technique, and generalizing the theory of complex function algebras, this single-source volume includes: an introduction to real Banach algebras; various generalizations of the Stone-Weierstrass theorem; Gleason parts; Choquet and Shilov boundaries; isometries of real function algebras; extensive references; and a detailed bibliography.;Real Function Algebras offers results of independent interest such as: topological conditions for the commutativity of a real or complex Banach algebra; Ransford's short elementary proof of the Bishop-Stone-Weierstrass theorem; the implication of the analyticity or antianalyticity of f from the harmonicity of Re f, Re f(2), Re f(3), and Re f(4); and the positivity of the real part of a linear functional on a subspace of C(X).;With over 600 display equations, this reference is for mathematical analysts; pure, applied, and industrial mathematicians; and theoretical physicists; and a text for courses in Banach algebras and function algebras.
Real Function Algebras
Title | Real Function Algebras PDF eBook |
Author | S.H. Kulkarni |
Publisher | CRC Press |
Pages | 204 |
Release | 1992-08-25 |
Genre | Mathematics |
ISBN | 9780824786533 |
This self-contained reference/text presents a thorough account of the theory of real function algebras. Employing the intrinsic approach, avoiding the complexification technique, and generalizing the theory of complex function algebras, this single-source volume includes: an introduction to real Banach algebras; various generalizations of the Stone-Weierstrass theorem; Gleason parts; Choquet and Shilov boundaries; isometries of real function algebras; extensive references; and a detailed bibliography.;Real Function Algebras offers results of independent interest such as: topological conditions for the commutativity of a real or complex Banach algebra; Ransford's short elementary proof of the Bishop-Stone-Weierstrass theorem; the implication of the analyticity or antianalyticity of f from the harmonicity of Re f, Re f(2), Re f(3), and Re f(4); and the positivity of the real part of a linear functional on a subspace of C(X).;With over 600 display equations, this reference is for mathematical analysts; pure, applied, and industrial mathematicians; and theoretical physicists; and a text for courses in Banach algebras and function algebras.
Function Algebras on Finite Sets
Title | Function Algebras on Finite Sets PDF eBook |
Author | Dietlinde Lau |
Publisher | Springer Science & Business Media |
Pages | 668 |
Release | 2006-11-23 |
Genre | Mathematics |
ISBN | 3540360239 |
Function Algebras on Finite Sets gives a broad introduction to the subject, leading up to the cutting edge of research. The general concepts of the Universal Algebra are given in the first part of the book, to familiarize the reader from the very beginning on with the algebraic side of function algebras. The second part covers the following topics: Galois-connection between function algebras and relation algebras, completeness criterions, and clone theory.
Natural Function Algebras
Title | Natural Function Algebras PDF eBook |
Author | Charles E. Rickart |
Publisher | Springer Science & Business Media |
Pages | 252 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461380707 |
The term "function algebra" usually refers to a uniformly closed algebra of complex valued continuous functions on a compact Hausdorff space. Such Banach alge bras, which are also called "uniform algebras", have been much studied during the past 15 or 20 years. Since the most important examples of uniform algebras consist of, or are built up from, analytic functions, it is not surprising that most of the work has been dominated by questions of analyticity in one form or another. In fact, the study of these special algebras and their generalizations accounts for the bulk of the re search on function algebras. We are concerned here, however, with another facet of the subject based on the observation that very general algebras of continuous func tions tend to exhibit certain properties that are strongly reminiscent of analyticity. Although there exist a variety of well-known properties of this kind that could be mentioned, in many ways the most striking is a local maximum modulus principle proved in 1960 by Hugo Rossi [RIl]. This result, one of the deepest and most elegant in the theory of function algebras, is an essential tool in the theory as we have developed it here. It holds for an arbitrary Banaeh algebra of £unctions defined on the spectrum (maximal ideal space) of the algebra. These are the algebras, along with appropriate generalizations to algebras defined on noncompact spaces, that we call "natural func tion algebras".
Glasnik Matematicki
Title | Glasnik Matematicki PDF eBook |
Author | |
Publisher | |
Pages | 174 |
Release | 1997-06 |
Genre | |
ISBN |
Canadian Journal of Mathematics
Title | Canadian Journal of Mathematics PDF eBook |
Author | |
Publisher | |
Pages | 256 |
Release | 1981-02 |
Genre | |
ISBN |
Banach Algebras and Several Complex Variables
Title | Banach Algebras and Several Complex Variables PDF eBook |
Author | John Wermer |
Publisher | Springer Science & Business Media |
Pages | 169 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 1475738781 |
During the past twenty years many connections have been found between the theory of analytic functions of one or more complex variables and the study of commutative Banach algebras. On the one hand, function theory has been used to answer algebraic questions such as the question of the existence of idempotents in a Banach algebra. On the other hand, concepts arising from the study of Banach algebras such as the maximal ideal space, the Silov boundary, Gleason parts, etc. have led to new questions and to new methods of proof in function theory. Roughly one third of this book isconcerned with developing some of the principal applications of function theory in several complex variables to Banach algebras. We presuppose no knowledge of severalcomplex variables on the part of the reader but develop the necessary material from scratch. The remainder of the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. For n > I no complete theory exists but many important particular problems have been solved. Throughout, our aim has been to make the exposition elementary and self-contained. We have cheerfully sacrificed generality and completeness all along the way in order to make it easier to understand the main ideas.