Real and Functional Analysis
Title | Real and Functional Analysis PDF eBook |
Author | Serge Lang |
Publisher | Springer Science & Business Media |
Pages | 591 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461208971 |
This book is meant as a text for a first-year graduate course in analysis. In a sense, it covers the same topics as elementary calculus but treats them in a manner suitable for people who will be using it in further mathematical investigations. The organization avoids long chains of logical interdependence, so that chapters are mostly independent. This allows a course to omit material from some chapters without compromising the exposition of material from later chapters.
Real and Functional Analysis
Title | Real and Functional Analysis PDF eBook |
Author | Vladimir I. Bogachev |
Publisher | Springer Nature |
Pages | 602 |
Release | 2020-02-25 |
Genre | Mathematics |
ISBN | 3030382192 |
This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.
Problems in Real and Functional Analysis
Title | Problems in Real and Functional Analysis PDF eBook |
Author | Alberto Torchinsky |
Publisher | American Mathematical Soc. |
Pages | 481 |
Release | 2015-12-14 |
Genre | Mathematics |
ISBN | 1470420570 |
It is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of conceptual problems (1,457 in total), ranging from easily accessible to thought provoking, mixing the practical and the theoretical aspects of the subject. Problems are grouped into ten chapters covering the main topics usually taught in courses on real and functional analysis. Each of these chapters opens with a brief reader's guide stating the needed definitions and basic results in the area and closes with a short description of the problems. - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpuf It is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of conceptual problems (1,457 in total), ranging from easily accessible to thought provoking, mixing the practical and the theoretical aspects of the subject. Problems are grouped into ten chapters covering the main topics usually taught in courses on real and functional analysis. Each of these chapters opens with a brief reader's guide stating the needed definitions and basic results in the area and closes with a short description of the problems. The Problem chapters are accompanied by Solution chapters, which include solutions to two-thirds of the problems. Students can expect the solutions to be written in a direct language that they can understand; usually the most "natural" rather than the most elegant solution is presented. The Problem chapters are accompanied by Solution chapters, which include solutions to two-thirds of the problems. Students can expect the solutions to be written in a direct language that they can understand; usually the most “natural” rather than the most elegant solution is presented. - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpufhe Problem chapters are accompanied by Solution chapters, which include solutions to two-thirds of the - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpuft is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpufIt is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of conceptual problems (1,457 in total), ranging from easily accessible to thought provoking, mixing the practical and the theoretical aspects of the subject. Problems are grouped into ten chapters covering the main topics usually taught in courses on real and functional analysis. Each of these chapters opens with a brief reader's guide stating - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpuf
Measure, Integration & Real Analysis
Title | Measure, Integration & Real Analysis PDF eBook |
Author | Sheldon Axler |
Publisher | Springer Nature |
Pages | 430 |
Release | 2019-11-29 |
Genre | Mathematics |
ISBN | 3030331431 |
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Real and Functional Analysis
Title | Real and Functional Analysis PDF eBook |
Author | Arunava Mukherjea |
Publisher | Springer |
Pages | 278 |
Release | 2013-09-13 |
Genre | Mathematics |
ISBN | 9781489945600 |
Real Analysis for the Undergraduate
Title | Real Analysis for the Undergraduate PDF eBook |
Author | Matthew A. Pons |
Publisher | Springer Science & Business Media |
Pages | 423 |
Release | 2014-01-25 |
Genre | Mathematics |
ISBN | 1461496381 |
This undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author’s engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.
Introductory Real Analysis
Title | Introductory Real Analysis PDF eBook |
Author | A. N. Kolmogorov |
Publisher | Courier Corporation |
Pages | 418 |
Release | 1975-06-01 |
Genre | Mathematics |
ISBN | 0486612260 |
Comprehensive, elementary introduction to real and functional analysis covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, more. 1970 edition.