Real Analysis: Foundations
Title | Real Analysis: Foundations PDF eBook |
Author | Sergei Ovchinnikov |
Publisher | Springer Nature |
Pages | 178 |
Release | 2021-03-20 |
Genre | Mathematics |
ISBN | 3030647013 |
This textbook explores the foundations of real analysis using the framework of general ordered fields, demonstrating the multifaceted nature of the area. Focusing on the logical structure of real analysis, the definitions and interrelations between core concepts are illustrated with the use of numerous examples and counterexamples. Readers will learn of the equivalence between various theorems and the completeness property of the underlying ordered field. These equivalences emphasize the fundamental role of real numbers in analysis. Comprising six chapters, the book opens with a rigorous presentation of the theories of rational and real numbers in the framework of ordered fields. This is followed by an accessible exploration of standard topics of elementary real analysis, including continuous functions, differentiation, integration, and infinite series. Readers will find this text conveniently self-contained, with three appendices included after the main text, covering an overview of natural numbers and integers, Dedekind's construction of real numbers, historical notes, and selected topics in algebra. Real Analysis: Foundations is ideal for students at the upper-undergraduate or beginning graduate level who are interested in the logical underpinnings of real analysis. With over 130 exercises, it is suitable for a one-semester course on elementary real analysis, as well as independent study.
Real Analysis and Foundations, Fourth Edition
Title | Real Analysis and Foundations, Fourth Edition PDF eBook |
Author | Steven G. Krantz |
Publisher | CRC Press |
Pages | 306 |
Release | 2016-12-12 |
Genre | Mathematics |
ISBN | 1498777708 |
A Readable yet Rigorous Approach to an Essential Part of Mathematical Thinking Back by popular demand, Real Analysis and Foundations, Third Edition bridges the gap between classic theoretical texts and less rigorous ones, providing a smooth transition from logic and proofs to real analysis. Along with the basic material, the text covers Riemann-Stieltjes integrals, Fourier analysis, metric spaces and applications, and differential equations. New to the Third Edition Offering a more streamlined presentation, this edition moves elementary number systems and set theory and logic to appendices and removes the material on wavelet theory, measure theory, differential forms, and the method of characteristics. It also adds a chapter on normed linear spaces and includes more examples and varying levels of exercises. Extensive Examples and Thorough Explanations Cultivate an In-Depth Understanding This best-selling book continues to give students a solid foundation in mathematical analysis and its applications. It prepares them for further exploration of measure theory, functional analysis, harmonic analysis, and beyond.
Real Analysis
Title | Real Analysis PDF eBook |
Author | Miklós Laczkovich |
Publisher | Springer |
Pages | 486 |
Release | 2015-10-08 |
Genre | Mathematics |
ISBN | 1493927663 |
Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.
Foundations of Mathematical Analysis
Title | Foundations of Mathematical Analysis PDF eBook |
Author | Richard Johnsonbaugh |
Publisher | Courier Corporation |
Pages | 450 |
Release | 2012-09-11 |
Genre | Mathematics |
ISBN | 0486134776 |
Definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. More than 750 exercises; some hints and solutions. 1981 edition.
Foundations of Analysis
Title | Foundations of Analysis PDF eBook |
Author | Edmund Landau |
Publisher | |
Pages | 142 |
Release | 2021-02 |
Genre | |
ISBN | 9781950217083 |
Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.
Foundations of Modern Analysis
Title | Foundations of Modern Analysis PDF eBook |
Author | Avner Friedman |
Publisher | Courier Corporation |
Pages | 276 |
Release | 1982-01-01 |
Genre | Mathematics |
ISBN | 9780486640624 |
Measure and integration, metric spaces, the elements of functional analysis in Banach spaces, and spectral theory in Hilbert spaces — all in a single study. Only book of its kind. Unusual topics, detailed analyses. Problems. Excellent for first-year graduate students, almost any course on modern analysis. Preface. Bibliography. Index.
The Foundations of Real Analysis
Title | The Foundations of Real Analysis PDF eBook |
Author | Richard Mikula |
Publisher | Universal-Publishers |
Pages | 505 |
Release | 2015-10-20 |
Genre | Mathematics |
ISBN | 1627345655 |
This textbook covers the subject of real analysis from the fundamentals up through beginning graduate level. It is appropriate as an introductory course text or a review text for graduate qualifying examinations. Some special features of the text include a thorough discussion of transcendental functions such as trigonometric, logarithmic, and exponential from power series expansions, deducing all important functional properties from the series definitions. The text is written in a user-friendly manner, and includes full solutions to all assigned exercises throughout the text.