Reactivity Controlled Compression Ignition (RCCI) of Gasoline- CNG Mixtures

Reactivity Controlled Compression Ignition (RCCI) of Gasoline- CNG Mixtures
Title Reactivity Controlled Compression Ignition (RCCI) of Gasoline- CNG Mixtures PDF eBook
Author Firmansyah Rashid (Abdul)
Publisher
Pages
Release 2018
Genre Technology
ISBN

Download Reactivity Controlled Compression Ignition (RCCI) of Gasoline- CNG Mixtures Book in PDF, Epub and Kindle

Reactivity controlled compression ignition (RCCI) is a dual fuel combustion method that relies on the significant difference in reactivity of the fuels involved. RCCI had a low performance at high engine speed due to its high tendency on knocking and high pressure rise rate. Therefore, this study investigates the effect of the fuel stratification on the RCCI combustion and its extended to the interaction of two low reactive fuels, gasoline and compressed natural gas (CNG), in the RCCI combustion system. The investigation was experimentally performed on a single cylinder engine and constant volume chamber. The stratification was created by varying injection timing in the engine by injecting CNG at 80° and 120° before top dead center (BTDC) and varying injection gap in the constant volume chamber with the gaps between two fuel injection timing were varied between 0 ms to 20 manuscript The results in the engine experiment show that proportions of gasoline and CNG and degree of stratification of CNG were found to be effective means of combustion control within certain limits of engine load and HC and CO emissions could be significantly reduced. While in constant volume chamber it has a significant effect on the combustion phasing. Stratified mixture produces shorter combustion duration while homogeneous mixture produces longer duration.

Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load

Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load
Title Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load PDF eBook
Author Reed Hanson
Publisher
Pages 18
Release 2011
Genre
ISBN

Download Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load Book in PDF, Epub and Kindle

Dual-fuel Reactivity Controlled Compression Ignition (RCCI) with Alternative Fuels

Dual-fuel Reactivity Controlled Compression Ignition (RCCI) with Alternative Fuels
Title Dual-fuel Reactivity Controlled Compression Ignition (RCCI) with Alternative Fuels PDF eBook
Author
Publisher
Pages 399
Release 2013
Genre
ISBN

Download Dual-fuel Reactivity Controlled Compression Ignition (RCCI) with Alternative Fuels Book in PDF, Epub and Kindle

This research will demonstrate that Reactivity Controlled Compression Ignition (RCCI) has several advantages over other LTC concepts in regards to fuel flexibility and combustion controllability. RCCI is a dual-fuel partially premixed combustion concept. In this strategy, a low reactivity fuel, such as gasoline or an alcohol fuel, is premixed via port fuel injection (PFI) and a high reactivity fuel, such as diesel fuel, is direct injected (DI) during the compression stroke. Once it was clear that dual-fuel RCCI operation had great potential in terms of combustion controllability, which is a great challenge for LTC strategies, the study focused on alternative fuels with RCCI combustion. The light-duty engine was used to study two different fuel combinations: gasoline/diesel and methanol/diesel. In addition to the fuels comparison, a modified piston bowl geometry was studied and compared to the stock re-entrant bowl. The modified piston featured a wide/shallow bowl with a matched geometric compression ratio to the stock piston of ~17.3. Using the modified piston, the gross indicated efficiency of RCCI combustion was significantly improved at light loads due to increases in combustion efficiency and decreases in heat transfer losses. At higher loads the modified piston also performed better than the stock piston, but the improvements were not as significant. The final portion of this research looks at the effects of cetane improvers on gasoline, ethanol, and methanol's fuel reactivity and the implications for RCCI combustion. In all three base fuels it was found that 2-ethylhexyl nitrate is more effective at increasing fuel reactivity (i.e., suppressing the octane number) compared to di-tert-butyl peroxide. However, 2-ethylhexyl nitrate has a potential disadvantage due its nitrate group, which can manifest itself as NOx emissions in the exhaust. The relationship between the fuel-bound nitrate group and the engine-out NOx emissions was extensively characterized. It was also observed that methanol's response to cetane improvers was better than that of ethanol, in spite of the fact that they have similar reactivities in their neat form.

Improvement Trends for Internal Combustion Engines

Improvement Trends for Internal Combustion Engines
Title Improvement Trends for Internal Combustion Engines PDF eBook
Author Bilge Albayrak Ceper
Publisher BoD – Books on Demand
Pages 190
Release 2018-03-21
Genre Technology & Engineering
ISBN 953513891X

Download Improvement Trends for Internal Combustion Engines Book in PDF, Epub and Kindle

Internal combustion engines have remained a challenge due to depending heavily on fossil fuels, which are already limited reserves, and a requirement for improvement in emission levels continuously. The number of advanced technologies such as hybrid systems and low-temperature combustion engines has been introduced, and a number of reports about the use of alternative fuels have been presented in recent years to overcome these challenges. The efforts have made the new concepts to be used in practical along with the new problems which are required advanced control systems. This book presents studies on internal combustion engines with alternative fuels and advanced combustion technologies to obtain efficiency and environment-friendly systems, measurement methodology of exhaust emissions and modelling of a hybrid engine system, and mechanical losses arising from ring-cylinder and ring-groove side contacts as well. The main theme here is to identify solutions for internal combustion engines in terms of fuel consumption, emissions, and performance.

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance
Title Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance PDF eBook
Author Richard Folkson
Publisher Woodhead Publishing
Pages 800
Release 2022-07-27
Genre Technology & Engineering
ISBN 0323900283

Download Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance Book in PDF, Epub and Kindle

Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, Second Edition provides a comprehensive view of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Sections consider the role of alternative fuels such as electricity, alcohol and hydrogen fuel cells, as well as advanced additives and oils in environmentally sustainable transport. Other topics explored include methods of revising engine and vehicle design to improve environmental performance and fuel economy and developments in electric and hybrid vehicle technologies. This reference will provide professionals, engineers and researchers of alternative fuels with an understanding of the latest clean technologies which will help them to advance the field. Those working in environmental and mechanical engineering will benefit from the detailed analysis of the technologies covered, as will fuel suppliers and energy producers seeking to improve the efficiency, sustainability and accessibility of their work. Provides a fully updated reference with significant technological advances and developments in the sector Presents analyses on the latest advances in electronic systems for emissions control, autonomous systems, artificial intelligence and legislative requirements Includes a strong focus on updated climate change predictions and consequences, helping the reader work towards ambitious 2050 climate change goals for the automotive industry

Natural Gas Engines

Natural Gas Engines
Title Natural Gas Engines PDF eBook
Author Kalyan Kumar Srinivasan
Publisher Springer
Pages 428
Release 2018-11-03
Genre Technology & Engineering
ISBN 9811333076

Download Natural Gas Engines Book in PDF, Epub and Kindle

This book covers the various advanced reciprocating combustion engine technologies that utilize natural gas and alternative fuels for transportation and power generation applications. It is divided into three major sections consisting of both fundamental and applied technologies to identify (but not limited to) clean, high-efficiency opportunities with natural gas fueling that have been developed through experimental protocols, numerical and high-performance computational simulations, and zero-dimensional, multizone combustion simulations. Particular emphasis is placed on statutes to monitor fine particulate emissions from tailpipe of engines operating on natural gas and alternative fuels.

Gasoline Compression Ignition Technology

Gasoline Compression Ignition Technology
Title Gasoline Compression Ignition Technology PDF eBook
Author Gautam Kalghatgi
Publisher Springer Nature
Pages 339
Release 2022-01-17
Genre Technology & Engineering
ISBN 9811687358

Download Gasoline Compression Ignition Technology Book in PDF, Epub and Kindle

This book focuses on gasoline compression ignition (GCI) which offers the prospect of engines with high efficiency and low exhaust emissions at a lower cost. A GCI engine is a compression ignition (CI) engine which is run on gasoline-like fuels (even on low-octane gasoline), making it significantly easier to control particulates and NOx but with high efficiency. The state of the art development to make GCI combustion feasible on practical vehicles is highlighted, e.g., on overcoming problems on cold start, high-pressure rise rates at high loads, transients, and HC and CO emissions. This book will be a useful guide to those in academia and industry.