Introduction to Glass Science and Technology

Introduction to Glass Science and Technology
Title Introduction to Glass Science and Technology PDF eBook
Author James E Shelby
Publisher Royal Society of Chemistry
Pages 320
Release 2015-11-06
Genre Technology & Engineering
ISBN 1782625119

Download Introduction to Glass Science and Technology Book in PDF, Epub and Kindle

This book provides a concise and inexpensive introduction for an undergraduate course in glass science and technology. The level of the book has deliberately been maintained at the introductory level to avoid confusion of the student by inclusion of more advanced material, and is unique in that its text is limited to the amount suitable for a one term course for students in materials science, ceramics or inorganic chemistry. The contents cover the fundamental topics of importance in glass science and technology, including glass formation, crystallization, phase separation and structure of glasses. Additional chapters discuss the most important properties of glasses, including discussion of physical, optical, electrical, chemical and mechanical properties. A final chapter provides an introduction to a number of methods used to form technical glasses, including glass sheet, bottles, insulation fibre, optical fibres and other common commercial products. In addition, the book contains discussion of the effects of phase separation and crystallization on the properties of glasses, which is neglected in other texts. Although intended primarily as a textbook, Introduction to Glass Science and Technology will also be invaluable to the engineer or scientist who desires more knowledge regarding the formation, properties and production of glass.

Multiphase Flow Handbook, Second Edition

Multiphase Flow Handbook, Second Edition
Title Multiphase Flow Handbook, Second Edition PDF eBook
Author Efstathios Michaelides
Publisher CRC Press
Pages 1559
Release 2016-10-26
Genre Science
ISBN 1315354624

Download Multiphase Flow Handbook, Second Edition Book in PDF, Epub and Kindle

The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.

Industrial Environmental Chemistry

Industrial Environmental Chemistry
Title Industrial Environmental Chemistry PDF eBook
Author Donald T. Sawyer
Publisher Springer Science & Business Media
Pages 310
Release 2013-12-11
Genre Science
ISBN 1489923209

Download Industrial Environmental Chemistry Book in PDF, Epub and Kindle

This monograph consists of manuscripts submitted by invited speakers who participated in the symposium "Industrial Environmental Chemistry: Waste Minimization in Industrial Processes and Remediation of Hazardous Waste," held March 24-26, 1992, at Texas A&M University. This meeting was the tenth annual international symposium sponsored by the Texas A&M Industry-University Cooperative Chemistry Program (IUCCP). The program was developed by an academic-industrial steering committee consisting of the co-chairmen, Professors Donald T. Sawyer and Arthur E. Martell of the Texas A&M University Chemistry Department, and members appointed by the sponsoring companies: Bernie A. Allen, Jr., Dow Chemical USA; Kirk W. Brown, Texas A&M University; Abraham Clearfield, Texas A&M University; Greg Leyes, Monsanto Company; Jay Warner, Hoechst-Celanese Corporation; Paul M. Zakriski, BF Goodrich Company; and Emile A. Schweikert, Texas A&M University (IUCCP Coordinator). The subject of this conference reflects the interest that has developed in academic institutions and industry for technological solutions to environmental contamination by industrial wastes. Progress is most likely with strategies that minimize waste production from industrial processes. Clearly the key to the protection and preservation of the environment will be through R&D that optimizes chemical processes to minimize or eliminate waste streams. Eleven of the papers are directed to waste minimization. An additional ten papers discuss chemical and biological remediation strategies for hazardous wastes that contaminate soils, sludges, and water.

Molten Salt Technology

Molten Salt Technology
Title Molten Salt Technology PDF eBook
Author David G. Lovering
Publisher Springer
Pages 536
Release 2014-11-14
Genre Education
ISBN 1475717245

Download Molten Salt Technology Book in PDF, Epub and Kindle

Government Reports Announcements & Index

Government Reports Announcements & Index
Title Government Reports Announcements & Index PDF eBook
Author
Publisher
Pages 776
Release 1996
Genre Science
ISBN

Download Government Reports Announcements & Index Book in PDF, Epub and Kindle

Mineral Scale Formation and Inhibition

Mineral Scale Formation and Inhibition
Title Mineral Scale Formation and Inhibition PDF eBook
Author Z. Amjad
Publisher Springer Science & Business Media
Pages 356
Release 2013-06-29
Genre Science
ISBN 1489914005

Download Mineral Scale Formation and Inhibition Book in PDF, Epub and Kindle

This book documents the proceedings of the symposium, "Mineral Scale Formation and Inhibition," held at the American Chemical Society Annual Meeting August 21 to 26, 1994, in Washington, D. C. The symposium, sponsored by the Division of Colloid and Surface Chemistry, was held in honor of Professor George H. Nancollas for his pioneering work in the field of crystal growth from solution. A total of 30 papers were presented by a wide spectrum of scientists. This book also includes papers that were not presented but were in the symposium program. The separation of a solid by crystallization is one of the oldest and perhaps the most frequently used operations in chemistry. Because of its widespread applicability, in recent years there has been considerable interest exhibited by academic and industrial scientists in understanding the mechanisms of crystallization of sparingly soluble salts. The salt systems of great interest in industrial water treatment area (i. e. , cooling and boiler) include carbon ates, sulfates, phosphates, and phosphonates of alkaline earth metals. Although not as common as calcium carbonate and calcium sulfate, barium and strontium sulfates have long plagued oil field and gas production operations. The build-up of these sparingly soluble salts on equipment surfaces results in lower heat transfer efficiency, increased corrosion rates, increased pumping costs, etc. In the laundry application, insoluble calcium carbonate tends to accumulate on washed fabrics and washing equipment parts, resulting in undesirable fabric-encrustation or scaling.

Particulate Two-phase Flow

Particulate Two-phase Flow
Title Particulate Two-phase Flow PDF eBook
Author M. C. Roco
Publisher Butterworth-Heinemann
Pages 1032
Release 1993
Genre Science
ISBN

Download Particulate Two-phase Flow Book in PDF, Epub and Kindle

This book is a collection of 28 contributions on basic phenomena and advanced methods of investigation for particulate two-phase flow. Written by leading scientists in the field, this book covers new measurement methods, experimental results on particulate two-phase flow microstructure at low and large Reynolds numbers, micromechanical, probabilistic, and numerical simulations, as well as production of ultrafine particles via aerosols and colloids for materials with controlled microstructure. Each chapter is focused on the qualitative progress made in the field in the last several years and has an extensive review section and original results. This unique volume assembles information previously found only in journals and specialized publications. It is an invaluable reference for researchers and engineers from academia and industry.