Rational Points on Varieties

Rational Points on Varieties
Title Rational Points on Varieties PDF eBook
Author Bjorn Poonen
Publisher American Mathematical Soc.
Pages 358
Release 2017-12-13
Genre Mathematics
ISBN 1470437732

Download Rational Points on Varieties Book in PDF, Epub and Kindle

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Rational Points on Varieties

Rational Points on Varieties
Title Rational Points on Varieties PDF eBook
Author Bjorn Poonen
Publisher American Mathematical Society
Pages 357
Release 2023-08-10
Genre Mathematics
ISBN 1470474581

Download Rational Points on Varieties Book in PDF, Epub and Kindle

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere. The origins of arithmetic (or Diophantine) geometry can be traced back to antiquity, and it remains a lively and wide research domain up to our days. The book by Bjorn Poonen, a leading expert in the field, opens doors to this vast field for many readers with different experiences and backgrounds. It leads through various algebraic geometric constructions towards its central subject: obstructions to existence of rational points. —Yuri Manin, Max-Planck-Institute, Bonn It is clear that my mathematical life would have been very different if a book like this had been around at the time I was a student. —Hendrik Lenstra, University Leiden Understanding rational points on arbitrary algebraic varieties is the ultimate challenge. We have conjectures but few results. Poonen's book, with its mixture of basic constructions and openings into current research, will attract new generations to the Queen of Mathematics. —Jean-Louis Colliot-Thélène, Université Paris-Sud A beautiful subject, handled by a master. —Joseph Silverman, Brown University

Rational Points on Algebraic Varieties

Rational Points on Algebraic Varieties
Title Rational Points on Algebraic Varieties PDF eBook
Author Emmanuel Peyre
Publisher Birkhäuser
Pages 455
Release 2012-12-06
Genre Mathematics
ISBN 3034883684

Download Rational Points on Algebraic Varieties Book in PDF, Epub and Kindle

This book is devoted to the study of rational and integral points on higher-dimensional algebraic varieties. It contains carefully selected research papers addressing the arithmetic geometry of varieties which are not of general type, with an emphasis on how rational points are distributed with respect to the classical, Zariski and adelic topologies. The present volume gives a glimpse of the state of the art of this rapidly expanding domain in arithmetic geometry. The techniques involve explicit geometric constructions, ideas from the minimal model program in algebraic geometry as well as analytic number theory and harmonic analysis on adelic groups.

Arithmetic of Higher-Dimensional Algebraic Varieties

Arithmetic of Higher-Dimensional Algebraic Varieties
Title Arithmetic of Higher-Dimensional Algebraic Varieties PDF eBook
Author Bjorn Poonen
Publisher Springer Science & Business Media
Pages 292
Release 2012-12-06
Genre Mathematics
ISBN 0817681701

Download Arithmetic of Higher-Dimensional Algebraic Varieties Book in PDF, Epub and Kindle

This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.

Higher Dimensional Varieties and Rational Points

Higher Dimensional Varieties and Rational Points
Title Higher Dimensional Varieties and Rational Points PDF eBook
Author Károly Jr. Böröczky
Publisher Springer Science & Business Media
Pages 307
Release 2013-12-11
Genre Mathematics
ISBN 3662051230

Download Higher Dimensional Varieties and Rational Points Book in PDF, Epub and Kindle

Exploring the connections between arithmetic and geometric properties of algebraic varieties has been the object of much fruitful study for a long time, especially in the case of curves. The aim of the Summer School and Conference on "Higher Dimensional Varieties and Rational Points" held in Budapest, Hungary during September 2001 was to bring together students and experts from the arithmetic and geometric sides of algebraic geometry in order to get a better understanding of the current problems, interactions and advances in higher dimension. The lecture series and conference lectures assembled in this volume give a comprehensive introduction to students and researchers in algebraic geometry and in related fields to the main ideas of this rapidly developing area.

Rational Points on Modular Elliptic Curves

Rational Points on Modular Elliptic Curves
Title Rational Points on Modular Elliptic Curves PDF eBook
Author Henri Darmon
Publisher American Mathematical Soc.
Pages 146
Release 2004
Genre Mathematics
ISBN 0821828681

Download Rational Points on Modular Elliptic Curves Book in PDF, Epub and Kindle

The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.

Torsors and Rational Points

Torsors and Rational Points
Title Torsors and Rational Points PDF eBook
Author Alexei Skorobogatov
Publisher Cambridge University Press
Pages 197
Release 2001-07-05
Genre Mathematics
ISBN 0521802377

Download Torsors and Rational Points Book in PDF, Epub and Kindle

This book, first published in 2001, is a complete and coherent exposition of the theory and applications of torsors to rational points.