Rational Points on Curves Over Finite Fields

Rational Points on Curves Over Finite Fields
Title Rational Points on Curves Over Finite Fields PDF eBook
Author Harald Niederreiter
Publisher Cambridge University Press
Pages 260
Release 2001-06-14
Genre Computers
ISBN 9780521665438

Download Rational Points on Curves Over Finite Fields Book in PDF, Epub and Kindle

Discussion of theory and applications of algebraic curves over finite fields with many rational points.

Rational Points on Elliptic Curves

Rational Points on Elliptic Curves
Title Rational Points on Elliptic Curves PDF eBook
Author Joseph H. Silverman
Publisher Springer Science & Business Media
Pages 292
Release 2013-04-17
Genre Mathematics
ISBN 1475742525

Download Rational Points on Elliptic Curves Book in PDF, Epub and Kindle

The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.

Algebraic Curves over a Finite Field

Algebraic Curves over a Finite Field
Title Algebraic Curves over a Finite Field PDF eBook
Author J. W. P. Hirschfeld
Publisher Princeton University Press
Pages 717
Release 2013-03-25
Genre Mathematics
ISBN 1400847419

Download Algebraic Curves over a Finite Field Book in PDF, Epub and Kindle

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.

Algebraic Curves Over Finite Fields

Algebraic Curves Over Finite Fields
Title Algebraic Curves Over Finite Fields PDF eBook
Author Carlos Moreno
Publisher Cambridge University Press
Pages 264
Release 1993-10-14
Genre Mathematics
ISBN 9780521459013

Download Algebraic Curves Over Finite Fields Book in PDF, Epub and Kindle

Develops the theory of algebraic curves over finite fields, their zeta and L-functions and the theory of algebraic geometric Goppa codes.

Rational Points on Modular Elliptic Curves

Rational Points on Modular Elliptic Curves
Title Rational Points on Modular Elliptic Curves PDF eBook
Author Henri Darmon
Publisher American Mathematical Soc.
Pages 146
Release 2004
Genre Mathematics
ISBN 0821828681

Download Rational Points on Modular Elliptic Curves Book in PDF, Epub and Kindle

The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.

Rational Points on Varieties

Rational Points on Varieties
Title Rational Points on Varieties PDF eBook
Author Bjorn Poonen
Publisher American Mathematical Soc.
Pages 358
Release 2017-12-13
Genre Mathematics
ISBN 1470437732

Download Rational Points on Varieties Book in PDF, Epub and Kindle

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Algebraic Geometry and Its Applications

Algebraic Geometry and Its Applications
Title Algebraic Geometry and Its Applications PDF eBook
Author Jean Chaumine
Publisher World Scientific
Pages 530
Release 2008
Genre Mathematics
ISBN 9812793429

Download Algebraic Geometry and Its Applications Book in PDF, Epub and Kindle

This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.