Rational Points on Varieties

Rational Points on Varieties
Title Rational Points on Varieties PDF eBook
Author Bjorn Poonen
Publisher American Mathematical Soc.
Pages 358
Release 2017-12-13
Genre Mathematics
ISBN 1470437732

Download Rational Points on Varieties Book in PDF, Epub and Kindle

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Rational Points on Algebraic Varieties

Rational Points on Algebraic Varieties
Title Rational Points on Algebraic Varieties PDF eBook
Author Emmanuel Peyre
Publisher Birkhäuser
Pages 455
Release 2012-12-06
Genre Mathematics
ISBN 3034883684

Download Rational Points on Algebraic Varieties Book in PDF, Epub and Kindle

This book is devoted to the study of rational and integral points on higher-dimensional algebraic varieties. It contains carefully selected research papers addressing the arithmetic geometry of varieties which are not of general type, with an emphasis on how rational points are distributed with respect to the classical, Zariski and adelic topologies. The present volume gives a glimpse of the state of the art of this rapidly expanding domain in arithmetic geometry. The techniques involve explicit geometric constructions, ideas from the minimal model program in algebraic geometry as well as analytic number theory and harmonic analysis on adelic groups.

Arithmetic of Higher-Dimensional Algebraic Varieties

Arithmetic of Higher-Dimensional Algebraic Varieties
Title Arithmetic of Higher-Dimensional Algebraic Varieties PDF eBook
Author Bjorn Poonen
Publisher Springer Science & Business Media
Pages 292
Release 2012-12-06
Genre Mathematics
ISBN 0817681701

Download Arithmetic of Higher-Dimensional Algebraic Varieties Book in PDF, Epub and Kindle

This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.

Rational Points and Arithmetic of Fundamental Groups

Rational Points and Arithmetic of Fundamental Groups
Title Rational Points and Arithmetic of Fundamental Groups PDF eBook
Author Jakob Stix
Publisher Springer
Pages 257
Release 2012-10-19
Genre Mathematics
ISBN 3642306748

Download Rational Points and Arithmetic of Fundamental Groups Book in PDF, Epub and Kindle

The section conjecture in anabelian geometry, announced by Grothendieck in 1983, is concerned with a description of the set of rational points of a hyperbolic algebraic curve over a number field in terms of the arithmetic of its fundamental group. While the conjecture is still open today in 2012, its study has revealed interesting arithmetic for curves and opened connections, for example, to the question whether the Brauer-Manin obstruction is the only one against rational points on curves. This monograph begins by laying the foundations for the space of sections of the fundamental group extension of an algebraic variety. Then, arithmetic assumptions on the base field are imposed and the local-to-global approach is studied in detail. The monograph concludes by discussing analogues of the section conjecture created by varying the base field or the type of variety, or by using a characteristic quotient or its birational analogue in lieu of the fundamental group extension.

Complex Analysis and Algebraic Geometry

Complex Analysis and Algebraic Geometry
Title Complex Analysis and Algebraic Geometry PDF eBook
Author Kunihiko Kodaira
Publisher CUP Archive
Pages 424
Release 1977
Genre Mathematics
ISBN 9780521217774

Download Complex Analysis and Algebraic Geometry Book in PDF, Epub and Kindle

The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.

Rational Points on Elliptic Curves

Rational Points on Elliptic Curves
Title Rational Points on Elliptic Curves PDF eBook
Author Joseph H. Silverman
Publisher Springer Science & Business Media
Pages 292
Release 2013-04-17
Genre Mathematics
ISBN 1475742525

Download Rational Points on Elliptic Curves Book in PDF, Epub and Kindle

The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.

Algebraic Geometry and Arithmetic Curves

Algebraic Geometry and Arithmetic Curves
Title Algebraic Geometry and Arithmetic Curves PDF eBook
Author Qing Liu
Publisher Oxford University Press
Pages 593
Release 2006-06-29
Genre Mathematics
ISBN 0191547808

Download Algebraic Geometry and Arithmetic Curves Book in PDF, Epub and Kindle

This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.