Rational and Nearly Rational Varieties
Title | Rational and Nearly Rational Varieties PDF eBook |
Author | János Kollár |
Publisher | Cambridge University Press |
Pages | 246 |
Release | 2004-04-22 |
Genre | Mathematics |
ISBN | 9780521832076 |
The most basic algebraic varieties are the projective spaces, and rational varieties are their closest relatives. In many applications where algebraic varieties appear in mathematics and the sciences, we see rational ones emerging as the most interesting examples. The authors have given an elementary treatment of rationality questions using a mix of classical and modern methods. Arising from a summer school course taught by János Kollár, this book develops the modern theory of rational and nearly rational varieties at a level that will particularly suit graduate students. There are numerous examples and exercises, all of which are accompanied by fully worked out solutions, that will make this book ideal as the basis of a graduate course. It will act as a valuable reference for researchers whilst helping graduate students to reach the point where they can begin to tackle contemporary research problems.
Rational and Nearly Rational Varieties
Title | Rational and Nearly Rational Varieties PDF eBook |
Author | János Kollár |
Publisher | |
Pages | |
Release | 2019 |
Genre | |
ISBN | 9781107471740 |
Rational Curves on Algebraic Varieties
Title | Rational Curves on Algebraic Varieties PDF eBook |
Author | Janos Kollar |
Publisher | Springer Science & Business Media |
Pages | 330 |
Release | 2013-04-09 |
Genre | Mathematics |
ISBN | 3662032767 |
The aim of this book is to provide an introduction to the structure theory of higher dimensional algebraic varieties by studying the geometry of curves, especially rational curves, on varieties. The main applications are in the study of Fano varieties and of related varieties with lots of rational curves on them. This Ergebnisse volume provides the first systematic introduction to this field of study. The book contains a large number of examples and exercises which serve to illustrate the range of the methods and also lead to many open questions of current research.
Rational Points on Varieties
Title | Rational Points on Varieties PDF eBook |
Author | Bjorn Poonen |
Publisher | American Mathematical Soc. |
Pages | 358 |
Release | 2017-12-13 |
Genre | Mathematics |
ISBN | 1470437732 |
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
Rational Points on Algebraic Varieties
Title | Rational Points on Algebraic Varieties PDF eBook |
Author | Emmanuel Peyre |
Publisher | Birkhäuser |
Pages | 455 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3034883684 |
This book is devoted to the study of rational and integral points on higher-dimensional algebraic varieties. It contains carefully selected research papers addressing the arithmetic geometry of varieties which are not of general type, with an emphasis on how rational points are distributed with respect to the classical, Zariski and adelic topologies. The present volume gives a glimpse of the state of the art of this rapidly expanding domain in arithmetic geometry. The techniques involve explicit geometric constructions, ideas from the minimal model program in algebraic geometry as well as analytic number theory and harmonic analysis on adelic groups.
Higher-Dimensional Algebraic Geometry
Title | Higher-Dimensional Algebraic Geometry PDF eBook |
Author | Olivier Debarre |
Publisher | Springer Science & Business Media |
Pages | 245 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 147575406X |
The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.
Rationality Problems in Algebraic Geometry
Title | Rationality Problems in Algebraic Geometry PDF eBook |
Author | Arnaud Beauville |
Publisher | Springer |
Pages | 176 |
Release | 2016-12-06 |
Genre | Mathematics |
ISBN | 3319462091 |
Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.