Random Matrix Theory, Interacting Particle Systems and Integrable Systems

Random Matrix Theory, Interacting Particle Systems and Integrable Systems
Title Random Matrix Theory, Interacting Particle Systems and Integrable Systems PDF eBook
Author Percy Deift
Publisher Cambridge University Press
Pages 539
Release 2014-12-15
Genre Language Arts & Disciplines
ISBN 1107079926

Download Random Matrix Theory, Interacting Particle Systems and Integrable Systems Book in PDF, Epub and Kindle

This volume includes review articles and research contributions on long-standing questions on universalities of Wigner matrices and beta-ensembles.

A First Course in Random Matrix Theory

A First Course in Random Matrix Theory
Title A First Course in Random Matrix Theory PDF eBook
Author Marc Potters
Publisher Cambridge University Press
Pages 371
Release 2020-12-03
Genre Computers
ISBN 1108488080

Download A First Course in Random Matrix Theory Book in PDF, Epub and Kindle

An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.

A Dynamical Approach to Random Matrix Theory

A Dynamical Approach to Random Matrix Theory
Title A Dynamical Approach to Random Matrix Theory PDF eBook
Author László Erdős
Publisher American Mathematical Soc.
Pages 239
Release 2017-08-30
Genre Mathematics
ISBN 1470436485

Download A Dynamical Approach to Random Matrix Theory Book in PDF, Epub and Kindle

A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

The Random Matrix Theory of the Classical Compact Groups

The Random Matrix Theory of the Classical Compact Groups
Title The Random Matrix Theory of the Classical Compact Groups PDF eBook
Author Elizabeth S. Meckes
Publisher Cambridge University Press
Pages 225
Release 2019-08-01
Genre Mathematics
ISBN 1108317995

Download The Random Matrix Theory of the Classical Compact Groups Book in PDF, Epub and Kindle

This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering
Title Nonlinear Dispersive Partial Differential Equations and Inverse Scattering PDF eBook
Author Peter D. Miller
Publisher Springer Nature
Pages 530
Release 2019-11-14
Genre Mathematics
ISBN 1493998064

Download Nonlinear Dispersive Partial Differential Equations and Inverse Scattering Book in PDF, Epub and Kindle

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing ​nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Random Matrices

Random Matrices
Title Random Matrices PDF eBook
Author Alexei Borodin
Publisher American Mathematical Soc.
Pages 513
Release 2019-10-30
Genre Education
ISBN 1470452804

Download Random Matrices Book in PDF, Epub and Kindle

Random matrix theory has many roots and many branches in mathematics, statistics, physics, computer science, data science, numerical analysis, biology, ecology, engineering, and operations research. This book provides a snippet of this vast domain of study, with a particular focus on the notations of universality and integrability. Universality shows that many systems behave the same way in their large scale limit, while integrability provides a route to describe the nature of those universal limits. Many of the ten contributed chapters address these themes, while others touch on applications of tools and results from random matrix theory. This book is appropriate for graduate students and researchers interested in learning techniques and results in random matrix theory from different perspectives and viewpoints. It also captures a moment in the evolution of the theory, when the previous decade brought major break-throughs, prompting exciting new directions of research.

Free Probability and Random Matrices

Free Probability and Random Matrices
Title Free Probability and Random Matrices PDF eBook
Author James A. Mingo
Publisher Springer
Pages 343
Release 2017-06-24
Genre Mathematics
ISBN 1493969420

Download Free Probability and Random Matrices Book in PDF, Epub and Kindle

This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.