Radiation Tolerant Electronics
Title | Radiation Tolerant Electronics PDF eBook |
Author | Paul Leroux |
Publisher | MDPI |
Pages | 210 |
Release | 2019-08-26 |
Genre | Technology & Engineering |
ISBN | 3039212796 |
Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.
Integrated Circuit Design for Radiation Environments
Title | Integrated Circuit Design for Radiation Environments PDF eBook |
Author | Stephen J. Gaul |
Publisher | John Wiley & Sons |
Pages | 514 |
Release | 2019-12-03 |
Genre | Technology & Engineering |
ISBN | 1118701852 |
A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today’s space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.
Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices
Title | Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices PDF eBook |
Author | Dan M. Fleetwood |
Publisher | World Scientific |
Pages | 354 |
Release | 2004 |
Genre | Technology & Engineering |
ISBN | 9789812794703 |
This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metalOCooxideOCosemiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes the background material necessary for understanding radiation effects at a more general level. Contents: Single Event Effects in Avionics and on the Ground (E Normand); Soft Errors in Commercial Integrated Circuits (R C Baumann); System Level Single Event Upset Mitigation Strategies (W F Heidergott); Space Radiation Effects in Optocouplers (R A Reed et al.); The Effects of Space Radiation Exposure on Power MOSFETs: A Review (K Shenai et al.); Total Dose Effects in Linear Bipolar Integrated Circuits (H J Barnaby); Hardness Assurance for Commercial Microelectronics (R L Pease); Switching Oxide Traps (T R Oldham); Online and Realtime Dosimetry Using Optically Stimulated Luminescence (L Dusseau & J Gasiot); and other articles. Readership: Practitioners, researchers, managers and graduate students in electrical and electronic engineering, semiconductor science and technology, and microelectronics."
Radiation Tolerant Electronics, Volume II.
Title | Radiation Tolerant Electronics, Volume II. PDF eBook |
Author | Paul Leroux |
Publisher | |
Pages | 0 |
Release | 2023 |
Genre | Radiation |
ISBN | 9783036564449 |
Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects.
Space Microelectronics Volume 2: Integrated Circuit Design for Space Applications
Title | Space Microelectronics Volume 2: Integrated Circuit Design for Space Applications PDF eBook |
Author | Anatoly Belous |
Publisher | Artech House |
Pages | 629 |
Release | 2017-07-31 |
Genre | Technology & Engineering |
ISBN | 1630814695 |
This invaluable second volume of a two-volume set is filled with details about the integrated circuit design for space applications. Various considerations for the selection and application of electronic components for designing spacecraft are discussed. The basic constructions of submicron transistors and schottky diodes during the technological process of production are explored. This book provides details on the energy consumption minimization methods for microelectronic devices. Specific topics include: Features and physical mechanisms of the effect of space radiation on all the main classes of microcircuits, including peculiarities of radiation impact on submicron integrated circuits;Special design, technology, and schematic methods of increasing the resistance to various types of space radiation;Recommendations for choosing research equipment and methods for irradiating various samples;Microcircuit designers on the composition of test elements for the study of the effect of radiation;Microprocessors, circuit boards, logic microcircuits, digital, analog, digital–analog microcircuits manufactured in various technologies (bipolar, CMOS, BiCMOS, SOI);Problems involved with designing high speed microelectronic devices and systems based on SOS-and SOI-structures;System-on-chip and system-in-package and methods for rejection of silicon microcircuits with hidden defects during mass production.
Radiation Tolerant Electronics, Volume II
Title | Radiation Tolerant Electronics, Volume II PDF eBook |
Author | Paul LeRoux |
Publisher | Mdpi AG |
Pages | 0 |
Release | 2023-01-16 |
Genre | Technology & Engineering |
ISBN | 9783036564456 |
Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade. After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects.
The Effects of Radiation on Electronic Systems
Title | The Effects of Radiation on Electronic Systems PDF eBook |
Author | George Messenger |
Publisher | Springer |
Pages | 587 |
Release | 2014-04-20 |
Genre | Science |
ISBN | 9789401753579 |