Radiation Effects on Integrated Circuits and Systems for Space Applications
Title | Radiation Effects on Integrated Circuits and Systems for Space Applications PDF eBook |
Author | Raoul Velazco |
Publisher | Springer |
Pages | 402 |
Release | 2019-04-10 |
Genre | Technology & Engineering |
ISBN | 3030046605 |
This book provides readers with invaluable overviews and updates of the most important topics in the radiation-effects field, enabling them to face significant challenges in the quest for the insertion of ever-higher density and higher performance electronic components in satellite systems. Readers will benefit from the up-to-date coverage of the various primary (classical) sub-areas of radiation effects, including the space and terrestrial radiation environments, basic mechanisms of total ionizing dose, digital and analog single-event transients, basic mechanisms of single-event effects, system-level SEE analysis, device-level, circuit-level and system-level hardening approaches, and radiation hardness assurance. Additionally, this book includes in-depth discussions of several newer areas of investigation, and current challenges to the radiation effects community, such as radiation hardening by design, the use of Commercial-Off-The-Shelf (COTS) components in space missions, CubeSats and SmallSats, the use of recent generation FPGA’s in space, and new approaches for radiation testing and validation. The authors provide essential background and fundamentals, in addition to information on the most recent advances and challenges in the sub-areas of radiation effects. Provides a concise introduction to the fundamentals of radiation effects, latest research results, and new test methods and procedures; Discusses the radiation effects and mitigation solutions for advanced integrated circuits and systems designed to operate in harsh radiation environments; Includes coverage of the impact of Small Satellites in the space industry.
Integrated Circuit Design for Radiation Environments
Title | Integrated Circuit Design for Radiation Environments PDF eBook |
Author | Stephen J. Gaul |
Publisher | John Wiley & Sons |
Pages | 514 |
Release | 2019-12-03 |
Genre | Technology & Engineering |
ISBN | 1118701852 |
A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today’s space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.
Radiation Effects on Embedded Systems
Title | Radiation Effects on Embedded Systems PDF eBook |
Author | Raoul Velazco |
Publisher | Springer Science & Business Media |
Pages | 273 |
Release | 2007-06-19 |
Genre | Technology & Engineering |
ISBN | 140205646X |
This volume provides an extensive overview of radiation effects on integrated circuits, offering major guidelines for coping with radiation effects on components. It contains a set of chapters based on the tutorials presented at the International School on Effects of Radiation on Embedded Systems for Space Applications (SERESSA) that was held in Manaus, Brazil, November 20-25, 2005.
Space Microelectronics Volume 2: Integrated Circuit Design for Space Applications
Title | Space Microelectronics Volume 2: Integrated Circuit Design for Space Applications PDF eBook |
Author | Anatoly Belous |
Publisher | Artech House |
Pages | 629 |
Release | 2017-07-31 |
Genre | Technology & Engineering |
ISBN | 1630814695 |
This invaluable second volume of a two-volume set is filled with details about the integrated circuit design for space applications. Various considerations for the selection and application of electronic components for designing spacecraft are discussed. The basic constructions of submicron transistors and schottky diodes during the technological process of production are explored. This book provides details on the energy consumption minimization methods for microelectronic devices. Specific topics include: Features and physical mechanisms of the effect of space radiation on all the main classes of microcircuits, including peculiarities of radiation impact on submicron integrated circuits;Special design, technology, and schematic methods of increasing the resistance to various types of space radiation;Recommendations for choosing research equipment and methods for irradiating various samples;Microcircuit designers on the composition of test elements for the study of the effect of radiation;Microprocessors, circuit boards, logic microcircuits, digital, analog, digital–analog microcircuits manufactured in various technologies (bipolar, CMOS, BiCMOS, SOI);Problems involved with designing high speed microelectronic devices and systems based on SOS-and SOI-structures;System-on-chip and system-in-package and methods for rejection of silicon microcircuits with hidden defects during mass production.
Radiation Tolerant Electronics
Title | Radiation Tolerant Electronics PDF eBook |
Author | Paul Leroux |
Publisher | MDPI |
Pages | 210 |
Release | 2019-08-26 |
Genre | Technology & Engineering |
ISBN | 3039212796 |
Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.
Radiation Effects in Semiconductors
Title | Radiation Effects in Semiconductors PDF eBook |
Author | Krzysztof Iniewski |
Publisher | CRC Press |
Pages | 432 |
Release | 2018-09-03 |
Genre | Technology & Engineering |
ISBN | 1439826951 |
Space applications, nuclear physics, military operations, medical imaging, and especially electronics (modern silicon processing) are obvious fields in which radiation damage can have serious consequences, i.e., degradation of MOS devices and circuits. Zeroing in on vital aspects of this broad and complex topic, Radiation Effects in Semiconductors addresses the ever-growing need for a clear understanding of radiation effects on semiconductor devices and circuits to combat potential damage it can cause. Features a chapter authored by renowned radiation authority Lawrence T. Clark on Radiation Hardened by Design SRAM Strategies for TID and SEE Mitigation This book analyzes the radiation problem, focusing on the most important aspects required for comprehending the degrading effects observed in semiconductor devices, circuits, and systems when they are irradiated. It explores how radiation interacts with solid materials, providing a detailed analysis of three ways this occurs: Photoelectric effect, Compton effect, and creation of electron-positron pairs. The author explains that the probability of these three effects occurring depends on the energy of the incident photon and the atomic number of the target. The book also discusses the effects that photons can have on matter—in terms of ionization effects and nuclear displacement Written for post-graduate researchers, semiconductor engineers, and nuclear and space engineers with some electronics background, this carefully constructed reference explains how ionizing radiation is creating damage in semiconducting devices and circuits and systems—and how that damage can be avoided in areas such as military/space missions, nuclear applications, plasma damage, and X-ray-based techniques. It features top-notch international experts in industry and academia who address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches.
Testing at the Speed of Light
Title | Testing at the Speed of Light PDF eBook |
Author | National Academies of Sciences, Engineering, and Medicine |
Publisher | National Academies Press |
Pages | 89 |
Release | 2018-06-08 |
Genre | Science |
ISBN | 030947082X |
Spacecraft depend on electronic components that must perform reliably over missions measured in years and decades. Space radiation is a primary source of degradation, reliability issues, and potentially failure for these electronic components. Although simulation and modeling are valuable for understanding the radiation risk to microelectronics, there is no substitute for testing, and an increased use of commercial-off-the- shelf parts in spacecraft may actually increase requirements for testing, as opposed to simulation and modeling. Testing at the Speed of Light evaluates the nation's current capabilities and future needs for testing the effects of space radiation on microelectronics to ensure mission success and makes recommendations on how to provide effective stewardship of the necessary radiation test infrastructure for the foreseeable future.