Fundamentals of Radiation Materials Science
Title | Fundamentals of Radiation Materials Science PDF eBook |
Author | GARY S. WAS |
Publisher | Springer |
Pages | 1014 |
Release | 2016-07-08 |
Genre | Technology & Engineering |
ISBN | 1493934384 |
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
Radiation Damage in Materials
Title | Radiation Damage in Materials PDF eBook |
Author | Yongqiang Wang |
Publisher | MDPI |
Pages | 196 |
Release | 2020-12-28 |
Genre | Science |
ISBN | 303936362X |
The complexity of radiation damage effects in materials that are used in various irradiation environments stems from the fundamental particle–solid interactions and the subsequent damage recovery dynamics after the collision cascades, which involves multiple length and time scales. Adding to this complexity are the transmuted impurities that are unavoidable from accompanying nuclear processes. Helium is one such impurity that plays an important and unique role in controlling the microstructure and properties of materials used in fast fission reactors, plasma-facing and structural materials in fusion devices, spallation neutron target designs, actinides, tritium-containing materials, and nuclear waste. Their ultra-low solubility in virtually all solids forces He atoms to self-precipitate into small bubbles that become nucleation sites for further void growth under radiation-induced vacancy supersaturations, resulting in material swelling and high-temperature He embrittlement, as well as surface blistering under low-energy and high-flux He bombardment. This Special Issue, “Radiation Damage in Materials—Helium Effects”, contains review articles and full-length papers on new irradiation material research activities and novel material ideas using experimental and/or modeling approaches. These studies elucidate the interactions of helium with various extreme environments and tailored nanostructures, as well as their impact on microstructural evolution and material properties.
Radiation Effects in Advanced Semiconductor Materials and Devices
Title | Radiation Effects in Advanced Semiconductor Materials and Devices PDF eBook |
Author | C. Claeys |
Publisher | Springer Science & Business Media |
Pages | 424 |
Release | 2013-11-11 |
Genre | Science |
ISBN | 3662049740 |
This wide-ranging book summarizes the current knowledge of radiation defects in semiconductors, outlining the shortcomings of present experimental and modelling techniques and giving an outlook on future developments. It also provides information on the application of sensors in nuclear power plants.
Holland-Frei Cancer Medicine
Title | Holland-Frei Cancer Medicine PDF eBook |
Author | Robert C. Bast, Jr. |
Publisher | John Wiley & Sons |
Pages | 2004 |
Release | 2017-03-10 |
Genre | Medical |
ISBN | 111900084X |
Holland-Frei Cancer Medicine, Ninth Edition, offers a balanced view of the most current knowledge of cancer science and clinical oncology practice. This all-new edition is the consummate reference source for medical oncologists, radiation oncologists, internists, surgical oncologists, and others who treat cancer patients. A translational perspective throughout, integrating cancer biology with cancer management providing an in depth understanding of the disease An emphasis on multidisciplinary, research-driven patient care to improve outcomes and optimal use of all appropriate therapies Cutting-edge coverage of personalized cancer care, including molecular diagnostics and therapeutics Concise, readable, clinically relevant text with algorithms, guidelines and insight into the use of both conventional and novel drugs Includes free access to the Wiley Digital Edition providing search across the book, the full reference list with web links, illustrations and photographs, and post-publication updates
Nuclear Materials Science
Title | Nuclear Materials Science PDF eBook |
Author | Karl R. Whittle |
Publisher | |
Pages | 0 |
Release | 2016 |
Genre | Technology & Engineering |
ISBN | 9780750311052 |
Annotation 'Nuclear Materials Science' takes students from understanding standard materials science and engineering and uses it as a base to work from in teaching the additional requirements of nuclear engineering science.
Spectroscopy and Modeling of Biomolecular Building Blocks
Title | Spectroscopy and Modeling of Biomolecular Building Blocks PDF eBook |
Author | Jean-Pierre Schermann |
Publisher | Elsevier |
Pages | 499 |
Release | 2007-10-16 |
Genre | Science |
ISBN | 0080558224 |
Spectroscopy and Modeling of Biomolecular Building Blocks presents an overview of recent advances in the intertwining of the following research fields: photon and electron spectroscopy, quantum chemistry, modelling and mass-spectrometry. The coupling of these disciplines offers a new point of view to the understanding of isolated elementary building blocks of biomolecules and their assemblies. It allows the unambiguous separation between intrinsic properties of biomolecular systems and those induced by the presence of their environment. The first chapters provide background in modelling (I), frequency-resolved spectroscopy using microwave, infrared and UV photons, time-resolved spectroscopy in the femtosecond domain and energy-resolved electron spectroscopy (II) and production of gas-phase neutral and ionic biomolecular species, mass-spectrometry, ion mobility and BIRD techniques (III). Chapter IV is devoted to case studies of gas-phase experimental investigations coupled to quantum or classical calculations. The topics are structural studies of nucleobases and oligonucleotides, peptides and proteins, sugars; neuromolecules; non-covalent complexes; chiral systems, interactions of low-energy electrons with biomolecules in the radiation chemistry context and very large gas-phase biomolecular systems. The fifth chapter concerns the link between gas-phase and liquid-phase. Different treatments of solvation are illustrated through examples pointing out the influence of progressive addition of water molecules upon properties of nucleobases, peptides, sugars and neuromolecules. - Offer a new perspective to the understanding of isolated elementary building blocks of bio molecules - Includes case studies of experimental investigations coupled to quantum or classical calculations
Defects and Radiation Damage in Metals
Title | Defects and Radiation Damage in Metals PDF eBook |
Author | M. W. Thompson |
Publisher | Cambridge University Press |
Pages | 442 |
Release | 1974-09-12 |
Genre | Science |
ISBN | 9780521098656 |
The study of radiation damage in solids generally has been stimulated by the technological demands of nuclear energy and space research. Professor Thompson's 1969 book discusses the basic atomic mechanisms which give rise to the main effects induced by radiation in metals, since it is in their relatively simple structures that the fundamental processes can be most easily identified. The first part of the book describes the nature of lattice defects in metal crystals. The presentation leads naturally into the discussion of radiation damage in the second part and recognises the important contribution that the study of irradiated metals has made to our general knowledge of defects. The wide coverage of this book includes developments in our understanding of collision cascades, of the clustering of point defects and the behaviour of impurities induced by irradiation.