Quiver Grassmannians of Extended Dynkin Type D Part I: Schubert Systems and Decompositions into Affine Spaces

Quiver Grassmannians of Extended Dynkin Type D Part I: Schubert Systems and Decompositions into Affine Spaces
Title Quiver Grassmannians of Extended Dynkin Type D Part I: Schubert Systems and Decompositions into Affine Spaces PDF eBook
Author Oliver Lorscheid
Publisher American Mathematical Soc.
Pages 90
Release 2019-12-02
Genre Education
ISBN 1470436477

Download Quiver Grassmannians of Extended Dynkin Type D Part I: Schubert Systems and Decompositions into Affine Spaces Book in PDF, Epub and Kindle

Let Q be a quiver of extended Dynkin type D˜n. In this first of two papers, the authors show that the quiver Grassmannian Gre–(M) has a decomposition into affine spaces for every dimension vector e– and every indecomposable representation M of defect −1 and defect 0, with the exception of the non-Schurian representations in homogeneous tubes. The authors characterize the affine spaces in terms of the combinatorics of a fixed coefficient quiver for M. The method of proof is to exhibit explicit equations for the Schubert cells of Gre–(M) and to solve this system of equations successively in linear terms. This leads to an intricate combinatorial problem, for whose solution the authors develop the theory of Schubert systems. In Part 2 of this pair of papers, they extend the result of this paper to all indecomposable representations M of Q and determine explicit formulae for the F-polynomial of M.

Quiver Grassmannians of Extended Dynkin Type D.

Quiver Grassmannians of Extended Dynkin Type D.
Title Quiver Grassmannians of Extended Dynkin Type D. PDF eBook
Author Oliver Lorscheid
Publisher
Pages 78
Release 2019
Genre Electronic books
ISBN 9781470453992

Download Quiver Grassmannians of Extended Dynkin Type D. Book in PDF, Epub and Kindle

Let Q be a quiver of extended Dynkin type \widetildeD}_n. In this first of two papers, the authors show that the quiver Grassmannian \mathrmGr}_{underline{e}}(M) has a decomposition into affine spaces for every dimension vector underlinee} and every indecomposable representation M of defect -1 and defect 0, with the exception of the non-Schurian representations in homogeneous tubes. The authors characterize the affine spaces in terms of the combinatorics of a fixed coefficient quiver for M. The method of proof is to exhibit explicit equations for the Schubert cells of \mathrmGr}_{underline{e}}(M) and to solve this system of equations successively in linear terms. This leads to an intricate combinatorial problem, for whose solution the authors develop the theory of Schubert systems. In Part 2 of this pair of papers, they extend the result of this paper to all indecomposable representations M of Q and determine explicit formulae for the F-polynomial of M.

Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces

Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces
Title Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces PDF eBook
Author Luigi Ambrosio
Publisher American Mathematical Soc.
Pages 134
Release 2020-02-13
Genre Education
ISBN 1470439131

Download Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces Book in PDF, Epub and Kindle

The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X,d,m). On the geometric side, the authors' new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one investigates the convexity properties of N-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors' new approach uses the nonlinear diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong CD∗(K,N) condition of Bacher-Sturm.

Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves

Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves
Title Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves PDF eBook
Author Massimiliano Berti
Publisher American Mathematical Soc.
Pages 184
Release 2020-04-03
Genre Education
ISBN 1470440695

Download Quasi-periodic Standing Wave Solutions of Gravity-Capillary Water Waves Book in PDF, Epub and Kindle

The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure.

Hodge Ideals

Hodge Ideals
Title Hodge Ideals PDF eBook
Author Mircea Mustaţă
Publisher American Mathematical Soc.
Pages 92
Release 2020-02-13
Genre Education
ISBN 1470437813

Download Hodge Ideals Book in PDF, Epub and Kindle

The authors use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. They analyze their local and global properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements.

Global Smooth Solutions for the Inviscid SQG Equation

Global Smooth Solutions for the Inviscid SQG Equation
Title Global Smooth Solutions for the Inviscid SQG Equation PDF eBook
Author Angel Castro
Publisher American Mathematical Soc.
Pages 89
Release 2020-09-28
Genre Mathematics
ISBN 1470442140

Download Global Smooth Solutions for the Inviscid SQG Equation Book in PDF, Epub and Kindle

In this paper, the authors show the existence of the first non trivial family of classical global solutions of the inviscid surface quasi-geostrophic equation.

Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case

Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case
Title Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case PDF eBook
Author Jacob Bedrossian
Publisher American Mathematical Soc.
Pages 154
Release 2020-09-28
Genre Mathematics
ISBN 1470442175

Download Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case Book in PDF, Epub and Kindle

The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $epsilon leq c_0mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t rightarrow infty $. For times $t gtrsim mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of ``2.5 dimensional'' streamwise-independent solutions referred to as streaks.