Quantum Transport in Ultrasmall Devices

Quantum Transport in Ultrasmall Devices
Title Quantum Transport in Ultrasmall Devices PDF eBook
Author David K. Ferry
Publisher Springer Science & Business Media
Pages 542
Release 2012-12-06
Genre Science
ISBN 1461519675

Download Quantum Transport in Ultrasmall Devices Book in PDF, Epub and Kindle

The operation of semiconductor devices depends upon the use of electrical potential barriers (such as gate depletion) in controlling the carrier densities (electrons and holes) and their transport. Although a successful device design is quite complicated and involves many aspects, the device engineering is mostly to devise a "best" device design by defIning optimal device structures and manipulating impurity profIles to obtain optimal control of the carrier flow through the device. This becomes increasingly diffIcult as the device scale becomes smaller and smaller. Since the introduction of integrated circuits, the number of individual transistors on a single chip has doubled approximately every three years. As the number of devices has grown, the critical dimension of the smallest feature, such as a gate length (which is related to the transport length defIning the channel), has consequently declined. The reduction of this design rule proceeds approximately by a factor of 1. 4 each generation, which means we will be using 0. 1-0. 15 ). lm rules for the 4 Gb chips a decade from now. If we continue this extrapolation, current technology will require 30 nm design rules, and a cell 3 2 size

Theory of Semiconductor Quantum Devices

Theory of Semiconductor Quantum Devices
Title Theory of Semiconductor Quantum Devices PDF eBook
Author Fausto Rossi
Publisher Springer Science & Business Media
Pages 382
Release 2011-01-13
Genre Technology & Engineering
ISBN 3642105564

Download Theory of Semiconductor Quantum Devices Book in PDF, Epub and Kindle

Primary goal of this book is to provide a cohesive description of the vast field of semiconductor quantum devices, with special emphasis on basic quantum-mechanical phenomena governing the electro-optical response of new-generation nanomaterials. The book will cover within a common language different types of optoelectronic nanodevices, including quantum-cascade laser sources and detectors, few-electron/exciton quantum devices, and semiconductor-based quantum logic gates. The distinguishing feature of the present volume is a unified microscopic treatment of quantum-transport and coherent-optics phenomena on ultrasmall space- and time-scales, as well as of their semiclassical counterparts.

An Introduction to Quantum Transport in Semiconductors

An Introduction to Quantum Transport in Semiconductors
Title An Introduction to Quantum Transport in Semiconductors PDF eBook
Author David K. Ferry
Publisher CRC Press
Pages 538
Release 2017-12-14
Genre Science
ISBN 1351796380

Download An Introduction to Quantum Transport in Semiconductors Book in PDF, Epub and Kindle

Throughout their college career, most engineering students have done problems and studies that are basically situated in the classical world. Some may have taken quantum mechanics as their chosen field of study. This book moves beyond the basics to highlight the full quantum mechanical nature of the transport of carriers through nanoelectronic structures. The book is unique in that addresses quantum transport only in the materials that are of interest to microelectronics—semiconductors, with their variable densities and effective masses. The author develops Green’s functions starting from equilibrium Green’s functions and going through modern time-dependent approaches to non-equilibrium Green’s functions, introduces relativistic bands for graphene and topological insulators and discusses the quantum transport changes that these bands induce, and discusses applications such as weak localization and phase breaking processes, resonant tunneling diodes, single-electron tunneling, and entanglement. Furthermore, he also explains modern ensemble Monte Carlo approaches to simulation of various approaches to quantum transport and the hydrodynamic approaches to quantum transport. All in all, the book describes all approaches to quantum transport in semiconductors, thus becoming an essential textbook for advanced graduate students in electrical engineering or physics.

Topics In High Field Transport In Semiconductors

Topics In High Field Transport In Semiconductors
Title Topics In High Field Transport In Semiconductors PDF eBook
Author Kevin F Brennan
Publisher World Scientific
Pages 270
Release 2001-07-31
Genre Technology & Engineering
ISBN 9814490733

Download Topics In High Field Transport In Semiconductors Book in PDF, Epub and Kindle

This book examines some of the charge carrier transport issues encountered in the field of modern semiconductor devices and novel materials. Theoretical approaches to the understanding and modeling of the relevant physical phenomena, seen in devices that have very small spatial dimensions and that operate under high electric field strength, are described in papers written by leading experts and pioneers in this field. In addition, the book examines the transport physics encountered in novel materials such as wide band gap semiconductors (GaN, SiC, etc.) as well as organic semiconductors. Topics in High Field Transport in Semiconductors provides a comprehensive overview that will be beneficial to newcomers as well as engineers and researchers engaged in this exciting field.

Hot Electrons in Semiconductors

Hot Electrons in Semiconductors
Title Hot Electrons in Semiconductors PDF eBook
Author N. Balkan
Publisher
Pages 536
Release 1998
Genre Science
ISBN 9780198500582

Download Hot Electrons in Semiconductors Book in PDF, Epub and Kindle

Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further development. This book is the only comprehensive and up-to-date coverage of hot electrons. Intended for both established researchers and graduate students, it gives a complete account of the historical development of the subject, together with current research and future trends, and covers the physics of hot electrons in bulk and low-dimensional device technology. The contributions are from leading scientists in the field and are grouped broadly into five categories: introduction and overview; hot electron-phonon interactions and ultra-fast phenomena in bulk and two-dimensional structures; hot electrons in quantum wires and dots; hot electron tunneling and transport in superlattices; and novel devices based on hot electron transport.

Terahertz Sensing Technology: Emerging scientific applications & novel device concepts

Terahertz Sensing Technology: Emerging scientific applications & novel device concepts
Title Terahertz Sensing Technology: Emerging scientific applications & novel device concepts PDF eBook
Author Dwight L. Woolard
Publisher World Scientific
Pages 420
Release 2003
Genre Technology & Engineering
ISBN 9812386114

Download Terahertz Sensing Technology: Emerging scientific applications & novel device concepts Book in PDF, Epub and Kindle

The last research frontier in high frequency electronics lies in the so-called terahertz (or submillimeter wave) regime, between the traditional microwave and the infrared domains. Significant scientific and technical challenges within the terahertz (THz) frequency regime have recently motivated an array of new research activities. During the last few years, major research programs have emerged that are focused on advancing the state of the art in THz frequency electronic technology and on investigating novel applications of THz frequency sensing. This book provides a detailed review of the new THz frequency technological developments that are emerging across a wide spectrum of sensing and technology areas.Volume II presents cutting edge results in two primary areas: (1) research that is attempting to establish THz-frequency sensing as a new characterization tool for chemical, biological and semiconductor materials, and (2) theoretical and experimental efforts to define new device concepts within the ?THz gap?.

Terahertz Sensing Technology - Vol 2: Emerging Scientific Applications And Novel Device Concepts

Terahertz Sensing Technology - Vol 2: Emerging Scientific Applications And Novel Device Concepts
Title Terahertz Sensing Technology - Vol 2: Emerging Scientific Applications And Novel Device Concepts PDF eBook
Author Michael S Shur
Publisher World Scientific
Pages 420
Release 2004-02-06
Genre Technology & Engineering
ISBN 9814483990

Download Terahertz Sensing Technology - Vol 2: Emerging Scientific Applications And Novel Device Concepts Book in PDF, Epub and Kindle

The last research frontier in high frequency electronics lies in the so-called terahertz (or submillimeter wave) regime, between the traditional microwave and the infrared domains. Significant scientific and technical challenges within the terahertz (THz) frequency regime have recently motivated an array of new research activities. During the last few years, major research programs have emerged that are focused on advancing the state of the art in THz frequency electronic technology and on investigating novel applications of THz frequency sensing. This book provides a detailed review of the new THz frequency technological developments that are emerging across a wide spectrum of sensing and technology areas.Volume II presents cutting edge results in two primary areas: (1) research that is attempting to establish THz-frequency sensing as a new characterization tool for chemical, biological and semiconductor materials, and (2) theoretical and experimental efforts to define new device concepts within the “THz gap”.