The Theory of Open Quantum Systems

The Theory of Open Quantum Systems
Title The Theory of Open Quantum Systems PDF eBook
Author Heinz-Peter Breuer
Publisher Oxford University Press, USA
Pages 648
Release 2002
Genre Mathematics
ISBN 9780198520634

Download The Theory of Open Quantum Systems Book in PDF, Epub and Kindle

This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states. The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented. The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.

Quantum Systems, Channels, Information

Quantum Systems, Channels, Information
Title Quantum Systems, Channels, Information PDF eBook
Author Alexander S. Holevo
Publisher Walter de Gruyter
Pages 364
Release 2012-12-06
Genre Science
ISBN 3110273403

Download Quantum Systems, Channels, Information Book in PDF, Epub and Kindle

The main emphasis of this work is the mathematical theory of quantum channels and their entropic and information characteristics. Quantum information theory is one of the key research areas, since it leads the way to vastly increased computing speeds by using quantum systems to store and process information. Quantum cryptography allows for secure communication of classified information. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. The past years were marked with impressive progress made by several researchers in solution of some difficult problems, in particular, the additivity of the entropy characteristics of quantum channels. This suggests a need for a book that not only introduces the basic concepts of quantum information theory, but also presents in detail some of the latest achievements.

Open Quantum Systems

Open Quantum Systems
Title Open Quantum Systems PDF eBook
Author Ángel Rivas
Publisher Springer Science & Business Media
Pages 103
Release 2011-10-01
Genre Science
ISBN 3642233546

Download Open Quantum Systems Book in PDF, Epub and Kindle

In this volume the fundamental theory of open quantum systems is revised in the light of modern developments in the field. A unified approach to the quantum evolution of open systems is presented by merging concepts and methods traditionally employed by different communities, such as quantum optics, condensed matter, chemical physics and mathematical physics. The mathematical structure and the general properties of the dynamical maps underlying open system dynamics are explained in detail. The microscopic derivation of dynamical equations, including both Markovian and non-Markovian evolutions, is also discussed. Because of the step-by-step explanations, this work is a useful reference to novices in this field. However, experienced researches can also benefit from the presentation of recent results.

Linear Dynamical Quantum Systems

Linear Dynamical Quantum Systems
Title Linear Dynamical Quantum Systems PDF eBook
Author Hendra I Nurdin
Publisher Springer
Pages 273
Release 2017-05-11
Genre Technology & Engineering
ISBN 3319552015

Download Linear Dynamical Quantum Systems Book in PDF, Epub and Kindle

This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics will find this book to be a valuable treatment of the control of an important class of quantum systems. The material presented here will also interest physicists working in optics, quantum optics, quantum information theory and other quantum-physical disciplines.

Open Quantum Systems

Open Quantum Systems
Title Open Quantum Systems PDF eBook
Author Subhashish Banerjee
Publisher Springer
Pages 289
Release 2018-11-01
Genre Science
ISBN 9811331820

Download Open Quantum Systems Book in PDF, Epub and Kindle

This book discusses the elementary ideas and tools needed for open quantum systems in a comprehensive manner. The emphasis is given to both the traditional master equation as well as the functional (path) integral approaches. It discusses the basic paradigm of open systems, the harmonic oscillator and the two-level system in detail. The traditional topics of dissipation and tunneling, as well as the modern field of quantum information, find a prominent place in the book. Assuming a basic background of quantum and statistical mechanics, this book will help readers familiarize with the basic tools of open quantum systems. Open quantum systems is the study of quantum dynamics of the system of interest, taking into account the effects of the ambient environment. It is ubiquitous in the sense that any system could be envisaged to be surrounded by its environment which could naturally exert its influence on it. Open quantum systems allows for a systematic understanding of irreversible processes such as decoherence and dissipation, of the essence in order to have a correct understanding of realistic quantum dynamics and also for possible implementations. This would be essential for a possible development of quantum technologies.

Quantum Dissipative Systems

Quantum Dissipative Systems
Title Quantum Dissipative Systems PDF eBook
Author Ulrich Weiss
Publisher World Scientific
Pages 587
Release 2012
Genre Mathematics
ISBN 9814374911

Download Quantum Dissipative Systems Book in PDF, Epub and Kindle

Starting from first principles, this book introduces the fundamental concepts and methods of dissipative quantum mechanics and explores related phenomena in condensed matter systems. Major experimental achievements in cooperation with theoretical advances have brightened the field and brought it to the attention of the general community in natural sciences. Nowadays, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book -- originally published in 1990 and republished in 1999 and and 2008 as enlarged second and third editions -- delves significantly deeper than ever before into the fundamental concepts, methods and applications of quantum dissipative systems.This fourth edition provides a self-contained and updated account of the quantum mechanics of open systems and offers important new material including the most recent developments. The subject matter has been expanded by about fifteen percent. Many chapters have been completely rewritten to better cater to both the needs of newcomers to the field and the requests of the advanced readership. Two chapters have been added that account for recent progress in the field. This book should be accessible to all graduate students in physics. Researchers will find this a rich and stimulating source.

Nonequilibrium Many-Body Theory of Quantum Systems

Nonequilibrium Many-Body Theory of Quantum Systems
Title Nonequilibrium Many-Body Theory of Quantum Systems PDF eBook
Author Gianluca Stefanucci
Publisher Cambridge University Press
Pages 619
Release 2013-03-07
Genre Science
ISBN 1107354579

Download Nonequilibrium Many-Body Theory of Quantum Systems Book in PDF, Epub and Kindle

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.