Quantum Squeezing

Quantum Squeezing
Title Quantum Squeezing PDF eBook
Author Peter D. Drummond
Publisher Springer Science & Business Media
Pages 378
Release 2013-03-14
Genre Science
ISBN 3662096455

Download Quantum Squeezing Book in PDF, Epub and Kindle

Covers the new field of squeezing in quantum fields, encompassing all types of systems in which quantum fluctuations are reduced below those in the normal vacuum state. The first comprehensive overview of the field, it presents the currently known techniques of generating squeezed photon fields, together with treatments of matter field squeezing. Both theory and experiments are treated, together with applications to communications and measurement.

Spin Squeezing and Non-linear Atom Interferometry with Bose-Einstein Condensates

Spin Squeezing and Non-linear Atom Interferometry with Bose-Einstein Condensates
Title Spin Squeezing and Non-linear Atom Interferometry with Bose-Einstein Condensates PDF eBook
Author Christian Groß
Publisher Springer Science & Business Media
Pages 123
Release 2012-01-13
Genre Science
ISBN 3642256368

Download Spin Squeezing and Non-linear Atom Interferometry with Bose-Einstein Condensates Book in PDF, Epub and Kindle

Interferometry, the most precise measurement technique known today, exploits the wave-like nature of the atoms or photons in the interferometer. As expected from the laws of quantum mechanics, the granular, particle-like features of the individually independent atoms or photons are responsible for the precision limit, the shot noise limit. However this “classical” bound is not fundamental and it is the aim of quantum metrology to overcome it by employing entanglement among the particles. This work reports on the realization of spin-squeezed states suitable for atom interferometry. Spin squeezing was generated on the basis of motional and spin degrees of freedom, whereby the latter allowed the implementation of a full interferometer with quantum-enhanced precision.

Photonics, Volume 1

Photonics, Volume 1
Title Photonics, Volume 1 PDF eBook
Author David L. Andrews
Publisher John Wiley & Sons
Pages 472
Release 2015-01-16
Genre Technology & Engineering
ISBN 1119009693

Download Photonics, Volume 1 Book in PDF, Epub and Kindle

Covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonics. This volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Polarization States; Quantum Electrodynamics; Quantum Information and Computing; Quantum Optics; Resonance Energy Transfer; Surface Optics; Ultrafast Pulse Phenomena. Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.

Quantum Measurement and Control

Quantum Measurement and Control
Title Quantum Measurement and Control PDF eBook
Author Howard M. Wiseman
Publisher Cambridge University Press
Pages 477
Release 2010
Genre Mathematics
ISBN 0521804426

Download Quantum Measurement and Control Book in PDF, Epub and Kindle

Modern quantum measurement for graduate students and researchers in quantum information, quantum metrology, quantum control and related fields.

Quantum Optics IV

Quantum Optics IV
Title Quantum Optics IV PDF eBook
Author John D. Harvey
Publisher Springer Science & Business Media
Pages 295
Release 2012-12-06
Genre Science
ISBN 3642714072

Download Quantum Optics IV Book in PDF, Epub and Kindle

This volume contains notes based on the lectures delivered at the fourth New Zealand Symposium in Laser Physics, held at the University of Waikato, Hamilton, February 10-15, 1986. At this meeting, about 80 physicists work ing in many parts of the world met to discuss topics of current interest in contemporary laser physics and quantum optics. These symposia, which have been held triennially since 1977, have evolved into an important meet ing ground for experimentalists and theoreticians working in a very rapidly developing field. As the format has evolved, the number of participants, in cluding the number from overseas, has grown steadily, and this year a poster session was included for the first time, enabling a far greater range of topics to be discussed than was possible in the limited lecture time available. At this meeting the major interest of the participants concerned the the oretical investigation of squeezed states of the radiation field and the very recently reported experimental observations of such states. Other related ar eas of work reported here include bistability and chaotic behaviour of optical systems, the quantum theory of measurements, optical tests of general rel ativity, and the current technological limitations governing the stabilization of lasers. The editors would like to thank the participants for providing detailed notes for publication shortly after the meeting, and the various organisa tions that have provided financial support.

Quantum Optomechanics and Nanomechanics

Quantum Optomechanics and Nanomechanics
Title Quantum Optomechanics and Nanomechanics PDF eBook
Author Pierre-Francois Cohadon
Publisher Oxford University Press, USA
Pages 475
Release 2020-02-20
Genre Science
ISBN 0198828144

Download Quantum Optomechanics and Nanomechanics Book in PDF, Epub and Kindle

The Les Houches Summer School in August 2015 covered the emerging fields of cavity optomechanics and quantum nanomechanics. Optomechanics is flourishing and its concepts and techniques are now applied to a wide range of topics. Modern quantum optomechanics was born in the late 1970s in the framework of gravitational wave interferometry, with an initial focus on the quantum limits of displacement measurements. Carlton Caves, Vladimir Braginsky, and others realized that the sensitivity of the anticipated large-scale gravitational-wave interferometers (GWI) was fundamentally limited by the quantum fluctuations of the measurement laser beam. After tremendous experimental progress, the sensitivity of the upcoming next generation of GWI will effectively be limited by quantum noise. In this way, quantum-optomechanical effects will directly affect the operation of what is arguably the world's most impressive precision experiment. However, optomechanics has also gained a life of its own with a focus on the quantum aspects of moving mirrors. Laser light can be used to cool mechanical resonators well below the temperature of its environment. After proof-of-principle demonstrations of this cooling in 2006, a number of systems were used as the field gradually merged with its condensed matter cousin (nanomechanical systems) to try to reach the mechanical quantum ground state, eventually demonstrated in 2010 by pure cryogenic techniques and just one year later by a combination of cryogenic and radiation-pressure cooling. The book covers all aspects -- historical, theoretical, experimental -- of the field, with its applications to quantum measurement, foundations of quantum mechanics and quantum information. It is an essential read for any new researcher in the field.

Progress in Optics

Progress in Optics
Title Progress in Optics PDF eBook
Author
Publisher Elsevier
Pages 444
Release 1995-12-01
Genre Science
ISBN 0080879942

Download Progress in Optics Book in PDF, Epub and Kindle

This volume presents a review of the research in several areas of modern optics written by experts well-known in the international scientific community. The first chapter discusses properties and methods of production and detection of coherent superpositions of macroscopically distinguishable states of light (the so-called Schrodinger cat states). Chapter two deals with the phase-shift method, which originated in the 1930s, for the analysis of potential-scattering problems in atomic and nuclear physics. Recently this approach has been applied to wave propagation in one-dimensional inhomogeneous media. Chapter three is concerned with the statistical properties of dynamic laser speckles that arise from scattering objects with rough surfaces undergoing translation and rotation. A moving phase-screen model is employed, which gives a relatively simple formulation of the theory and a clear picture of the time-varying speckle phenomenon. The fourth chapter presents a review of the more important theoretical and experimental results relating to optics of multilayer systems with randomly rough boundaries. The significant theoretical approaches which make it possible to interpret experimental data involving such systems are described, and relevant methods for optical characterization of systems of this kind are outlined. The last chapter presents an account of a theory of the photon transport through turbid media.