Quantum Probability - Quantum Logic
Title | Quantum Probability - Quantum Logic PDF eBook |
Author | Itamar Pitowsky |
Publisher | |
Pages | 224 |
Release | 2014-01-15 |
Genre | |
ISBN | 9783662137345 |
Quantum Logic in Algebraic Approach
Title | Quantum Logic in Algebraic Approach PDF eBook |
Author | Miklós Rédei |
Publisher | Springer Science & Business Media |
Pages | 244 |
Release | 2013-03-09 |
Genre | Science |
ISBN | 9401590265 |
This work has grown out of the lecture notes that were prepared for a series of seminars on some selected topics in quantum logic. The seminars were delivered during the first semester of the 1993/1994 academic year in the Unit for Foundations of Science of the Department of History and Foundations of Mathematics and Science, Faculty of Physics, Utrecht University, The Netherlands, while I was staying in that Unit on a European Community Research Grant, and in the Center for Philosophy of Science, University of Pittsburgh, U. S. A. , where I was staying during the 1994/1995 academic year as a Visiting Fellow on a Fulbright Research Grant, and where I also was supported by the Istvan Szechenyi Scholarship Foundation. The financial support provided by these foundations, by the Center for Philosophy of Science and by the European Community is greatly acknowledged, and I wish to thank D. Dieks, the professor of the Foundations Group in Utrecht and G. Massey, the director of the Center for Philosophy of Science in Pittsburgh for making my stay at the respective institutions possible. I also wish to thank both the members of the Foundations Group in Utrecht, especially D. Dieks, C. Lutz, F. Muller, J. Uffink and P. Vermaas and the participants in the seminars at the Center for Philosophy of Science in Pittsburgh, especially N. Belnap, J. Earman, A. Janis, J. Norton, and J.
The Logic of Quantum Mechanics: Volume 15
Title | The Logic of Quantum Mechanics: Volume 15 PDF eBook |
Author | Enrico G. Beltrametti |
Publisher | Cambridge University Press |
Pages | 340 |
Release | 2010-12-09 |
Genre | Mathematics |
ISBN | 9780521168496 |
This volume examines the logic, theory and mathematics of quantum mechanics in a clear and thorough way.
Quantum, Probability, Logic
Title | Quantum, Probability, Logic PDF eBook |
Author | Meir Hemmo |
Publisher | Springer Nature |
Pages | 635 |
Release | 2020-04-07 |
Genre | Science |
ISBN | 3030343162 |
This volume provides a broad perspective on the state of the art in the philosophy and conceptual foundations of quantum mechanics. Its essays take their starting point in the work and influence of Itamar Pitowsky, who has greatly influenced our understanding of what is characteristically non-classical about quantum probabilities and quantum logic, and this serves as a vantage point from which they reflect on key ongoing debates in the field. Readers will find a definitive and multi-faceted description of the major open questions in the foundations of quantum mechanics today, including: Is quantum mechanics a new theory of (contextual) probability? Should the quantum state be interpreted objectively or subjectively? How should probability be understood in the Everett interpretation of quantum mechanics? What are the limits of the physical implementation of computation? The impact of this volume goes beyond the exposition of Pitowsky’s influence: it provides a unique collection of essays by leading thinkers containing profound reflections on the field. Chapter 1. Classical logic, classical probability, and quantum mechanics (Samson Abramsky) Chapter 2. Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanic (Valia Allori) Chapter 3. Unscrambling Subjective and Epistemic Probabilities (Guido Bacciagaluppi) Chapter 4. Wigner’s Friend as a Rational Agent (Veronika Baumann, Časlav Brukner) Chapter 5. Pitowsky's Epistemic Interpretation of Quantum Mechanics and the PBR Theorem (Yemima Ben-Menahem) Chapter 6. On the Mathematical Constitution and Explanation of Physical Facts (Joseph Berkovitz) Chapter 7. Everettian probabilities, the Deutsch-Wallace theorem and the Principal Principle (Harvey R. Brown, Gal Ben Porath) Chapter 8. ‘Two Dogmas’ Redu (Jeffrey Bub) Chapter 9. Physical Computability Theses (B. Jack Copeland, Oron Shagrir) Chapter 10. Agents in Healey’s Pragmatist Quantum Theory: A Comparison with Pitowsky’s Approach to Quantum Mechanics (Mauro Dorato) Chapter 11. Quantum Mechanics As a Theory of Observables and States and, Thereby, As a Theory of Probability (John Earman, Laura Ruetsche) Chapter 12. The Measurement Problem and two Dogmas about Quantum Mechanic (Laura Felline) Chapter 13. There Is More Than One Way to Skin a Cat: Quantum Information Principles In a Finite World(Amit Hagar) Chapter 14. Is Quantum Mechanics a New Theory of Probability? (Richard Healey) Chapter 15. Quantum Mechanics as a Theory of Probability (Meir Hemmo, Orly Shenker) Chapter 16. On the Three Types of Bell's Inequalities (Gábor Hofer-Szabó) Chapter 17. On the Descriptive Power of Probability Logic (Ehud Hrushovski) Chapter 18. The Argument against Quantum Computers (Gil Kalai) Chapter 19. Why a Relativistic Quantum Mechanical World Must be Indeterministic (Avi Levy, Meir Hemmo) Chapter 20. Subjectivists about Quantum Probabilities Should be Realists about Quantum States (Wayne C. Myrvold) Chapter 21. The Relativistic Einstein-Podolsky-Rosen Argument (Michael Redhead) Chapter 22. What price statistical independence? How Einstein missed the photon.(Simon Saunders) Chapter 23. How (Maximally) Contextual is Quantum Mechanics? (Andrew W. Simmons) Chapter 24. Roots and (Re)Sources of Value (In)Definiteness Versus Contextuality (Karl Svozil) Chapter 25: Schrödinger’s Reaction to the EPR Paper (Jos Uffink) Chapter 26. Derivations of the Born Rule (Lev Vaidman) Chapter 27. Dynamical States and the Conventionality of (Non-) Classicality (Alexander Wilce).
Quantum Probability
Title | Quantum Probability PDF eBook |
Author | Stanley Gudder |
Publisher | Academic Press |
Pages | 344 |
Release | 1988-08-28 |
Genre | Mathematics |
ISBN |
Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism. Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles. The first two chapters survey the necessary background in quantum mechanics and probability theory and therefore the book is fairly self-contained, assuming only an elementary knowledge of linear operators in Hilbert space.
Probability in Physics
Title | Probability in Physics PDF eBook |
Author | Yemima Ben-Menahem |
Publisher | Springer Science & Business Media |
Pages | 325 |
Release | 2012-01-25 |
Genre | Science |
ISBN | 3642213286 |
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
The Logico-Algebraic Approach to Quantum Mechanics
Title | The Logico-Algebraic Approach to Quantum Mechanics PDF eBook |
Author | C.A. Hooker |
Publisher | Springer Science & Business Media |
Pages | 638 |
Release | 1975-09-30 |
Genre | Philosophy |
ISBN | 9789027705679 |
The twentieth century has witnessed a striking transformation in the un derstanding of the theories of mathematical physics. There has emerged clearly the idea that physical theories are significantly characterized by their abstract mathematical structure. This is in opposition to the tradi tional opinion that one should look to the specific applications of a theory in order to understand it. One might with reason now espouse the view that to understand the deeper character of a theory one must know its abstract structure and understand the significance of that struc ture, while to understand how a theory might be modified in light of its experimental inadequacies one must be intimately acquainted with how it is applied. Quantum theory itself has gone through a development this century which illustrates strikingly the shifting perspective. From a collection of intuitive physical maneuvers under Bohr, through a formative stage in which the mathematical framework was bifurcated (between Schrödinger and Heisenberg) to an elegant culmination in von Neumann's Hilbert space formulation the elementary theory moved, flanked even at the later stage by the ill-understood formalisms for the relativistic version and for the field-theoretic altemative; after that we have a gradual, but constant, elaboration of all these quantal theories as abstract mathematical struc tures (their point of departure being von Neumann's formalism) until at the present time theoretical work is heavily preoccupied with the manip ulation of purely abstract structures.