Quantum Groups and Quantum Cohomology
Title | Quantum Groups and Quantum Cohomology PDF eBook |
Author | Davesh Maulik |
Publisher | |
Pages | 209 |
Release | 2019 |
Genre | Cohomology operations |
ISBN | 9782856299005 |
Quantum Groups
Title | Quantum Groups PDF eBook |
Author | Christian Kassel |
Publisher | Springer Science & Business Media |
Pages | 540 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461207835 |
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
Introduction to Quantum Groups
Title | Introduction to Quantum Groups PDF eBook |
Author | George Lusztig |
Publisher | Springer Science & Business Media |
Pages | 361 |
Release | 2010-10-27 |
Genre | Mathematics |
ISBN | 0817647171 |
The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.
An Invitation to Quantum Cohomology
Title | An Invitation to Quantum Cohomology PDF eBook |
Author | Joachim Kock |
Publisher | Springer Science & Business Media |
Pages | 162 |
Release | 2007-12-27 |
Genre | Mathematics |
ISBN | 0817644954 |
Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves Viewpoint is mostly that of enumerative geometry Emphasis is on examples, heuristic discussions, and simple applications to best convey the intuition behind the subject Ideal for self-study, for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory
Representation Theory of Algebraic Groups and Quantum Groups
Title | Representation Theory of Algebraic Groups and Quantum Groups PDF eBook |
Author | Toshiaki Shoji |
Publisher | American Mathematical Society(RI) |
Pages | 514 |
Release | 2004 |
Genre | Computers |
ISBN |
A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.
From Quantum Cohomology to Integrable Systems
Title | From Quantum Cohomology to Integrable Systems PDF eBook |
Author | Martin A. Guest |
Publisher | OUP Oxford |
Pages | 336 |
Release | 2008-03-13 |
Genre | Mathematics |
ISBN | 0191606960 |
Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.
Affine Lie Algebras and Quantum Groups
Title | Affine Lie Algebras and Quantum Groups PDF eBook |
Author | Jürgen Fuchs |
Publisher | Cambridge University Press |
Pages | 452 |
Release | 1995-03-09 |
Genre | Mathematics |
ISBN | 9780521484121 |
This is an introduction to the theory of affine Lie Algebras, to the theory of quantum groups, and to the interrelationships between these two fields that are encountered in conformal field theory.