Quantum Cosmology
Title | Quantum Cosmology PDF eBook |
Author | Martin Bojowald |
Publisher | Springer Science & Business Media |
Pages | 306 |
Release | 2011-07-15 |
Genre | Science |
ISBN | 1441982752 |
Consequences of quantum gravity on grander scales are expected to be enormous: only such a theory can show how black holes really behave and where our universe came from. Applications of loop quantum gravity to cosmology have especially by now shed much light on cosmic evolution of a universe in a fundamental, microscopic description. Modern techniques are explained in this book which demonstrate how the universe could have come from a non-singular phase before the big bang, how equations for the evolution of structure can be derived, but also what fundamental limitations remain to our knowledge of the universe before the big bang. The following topics will be covered in this book: Hamiltonian cosmology: a general basic treatment of isotropy, perturbations and their role for observations; useful in general cosmology. Effective equations: an efficient way to evaluate equations of quantum gravity, which is also useful in other areas of physics where quantum theory is involved. Loop quantization: a new formalism for the atomic picture of space-time; usually presented at a sophisticated mathematical level, but evaluated here from an intuitive physical side. The book will start with physical motivations, rather than mathematical developments which is more common in other expositions of this field. All the required mathematical methods will be presented, but will not distract the reader from seeing the underlying physics. Simple but representative models will be presented first to show the basic features, which are then used to work upwards to a general description of quantum gravity and its applications in cosmology. This will make the book accessible to a more general physics readership.
Foundations of Quantum Cosmology
Title | Foundations of Quantum Cosmology PDF eBook |
Author | Martin Bojowald |
Publisher | |
Pages | 346 |
Release | 2020-09-17 |
Genre | Quantum cosmology |
ISBN | 9780750324588 |
This is the first book to lay the physical foundations of quantum cosmology, complete with an introduction to space-time physics, quantum theory, and the main approaches to quantum gravity. It is an essential guide for researchers in quantum gravity and astrophysicists interested in fundamental aspects of cosmology.
Physical Foundations of Cosmology
Title | Physical Foundations of Cosmology PDF eBook |
Author | Viatcheslav Mukhanov |
Publisher | Cambridge University Press |
Pages | 454 |
Release | 2005-11-10 |
Genre | Science |
ISBN | 1139447114 |
Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.
Classical and Quantum Cosmology
Title | Classical and Quantum Cosmology PDF eBook |
Author | Gianluca Calcagni |
Publisher | Springer |
Pages | 854 |
Release | 2017-01-06 |
Genre | Science |
ISBN | 3319411276 |
This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography of about 3500 items, will serve as a valuable reference for lecturers and researchers.
Cosmology and String Theory
Title | Cosmology and String Theory PDF eBook |
Author | Horaţiu Năstase |
Publisher | Springer |
Pages | 459 |
Release | 2019-04-04 |
Genre | Science |
ISBN | 3030150771 |
Cosmology describes the evolution of the Universe and is based on a description of its beginning from quantum fluctuations. String theory is the only known consistent theory of quantum gravity that can deal with the highest energy scales near the Planck energy, relevant for cosmology's beginning. As a result, only string theory can give a fully consistent picture of cosmological origins. This book describes the best current avenues for obtaining cosmology from string theory. It is aimed at graduate students, and also researchers, with some familiarity with cosmology and string theory, however no detailed knowledge is required.
Canonical Quantum Gravity
Title | Canonical Quantum Gravity PDF eBook |
Author | Francesco Cianfrani |
Publisher | World Scientific Publishing Company Incorporated |
Pages | 300 |
Release | 2014 |
Genre | Science |
ISBN | 9789814556644 |
This book aims to present a pedagogical and self-consistent treatment of the canonical approach to Quantum Gravity, starting from its original formulation to the most recent developments in the field. We start with an innovative and enlightening introduction to the formalism and concepts on which General Relativity has been built, giving all the information necessary in the later analysis. A brief sketch of the Standard Cosmological Model describing the Universe evolution is also given alongside the analysis of the inflationary mechanism. After deepening the fundamental properties of constrained dynamic systems, the Lagrangian approach to the Einsteinian Theory is presented in some detail, underlining the parallelism with non-Abelian gauge theories. Then, the basic concepts of the canonical approach to Quantum Mechanics are provided, focusing on all those formulations which are relevant for the Canonical Quantum Gravity problem. The Hamiltonian formulation of General Relativity and its constrained structure is then analyzed by comparing different formulations. The resulting quantum dynamics, described by the Wheeler-DeWitt equation, is fully discussed in order to outline its merits and limits. Afterwards, the reformulation of Canonical Quantum Gravity in terms of the Ashtekar-Barbero-Immirzi variables is faced by a detailed discussion of the resulting Loop Quantum Gravity Theory. Finally, we provide a consistent picture of canonical Quantum Cosmology by facing the main features of the Wheeler-DeWitt equation for the homogeneous Bianchi models and then by a detailed treatment of Loop Quantum Cosmology, including very recent developments.
Gravity, Gauge Theories and Quantum Cosmology
Title | Gravity, Gauge Theories and Quantum Cosmology PDF eBook |
Author | J.V. Narlikar |
Publisher | Springer Science & Business Media |
Pages | 477 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9400945086 |
For several decades since its inception, Einstein's general theory of relativity stood somewhat aloof from the rest of physics. Paradoxically, the attributes which normally boost a physical theory - namely, its perfection as a theoreti cal framework and the extraordinary intellectual achievement underlying i- prevented the general theory from being assimilated in the mainstream of physics. It was as if theoreticians hesitated to tamper with something that is manifestly so beautiful. Happily, two developments in the 1970s have narrowed the gap. In 1974 Stephen Hawking arrived at the remarkable result that black holes radiate after all. And in the second half of the decade, particle physicists discovered that the only scenario for applying their grand unified theories was offered by the very early phase in the history of the Big Bang universe. In both cases, it was necessary to discuss the ideas of quantum field theory in the background of curved spacetime that is basic to general relativity. This is, however, only half the total story. If gravity is to be brought into the general fold of theoretical physics we have to know how to quantize it. To date this has proved a formidable task although most physicists would agree that, as in the case of grand unified theories, quantum gravity will have applications to cosmology, in the very early stages of the Big Bang universe. In fact, the present picture of the Big Bang universe necessarily forces us to think of quantum cosmology.