Quantitative Understanding of Biosystems
Title | Quantitative Understanding of Biosystems PDF eBook |
Author | Thomas M. Nordlund |
Publisher | CRC Press |
Pages | 870 |
Release | 2019-04-16 |
Genre | Science |
ISBN | 1351801171 |
Praise for the prior edition "The author has done a magnificent job... this book is highly recommended for introducing biophysics to the motivated and curious undergraduate student." ―Contemporary Physics "a terrific text ... will enable students to understand the significance of biological parameters through quantitative examples―a modern way of learning biophysics." ―American Journal of Physics "A superb pedagogical textbook... Full-color illustrations aid students in their understanding" ―Midwest Book Review This new edition provides a complete update to the most accessible yet thorough introduction to the physical and quantitative aspects of biological systems and processes involving macromolecules, subcellular structures, and whole cells. It includes two brand new chapters covering experimental techniques, especially atomic force microscopy, complementing the updated coverage of mathematical and computational tools. The authors have also incorporated additions to the multimedia component of video clips and animations, as well as interactive diagrams and graphs. Thomas Nordlund is professor emeritus in the Department of Physics at The University of Alabama at Birmingham. He is an elected fellow of the American Physical Society and has been studying biomolecular dynamics for over thirty years. Peter M. Hoffmann is a professor in the Department of Physics and Astronomy at Wayne State University in Detroit, Michigan, where he founded the biomedical physics program. He has been involved in soft matter and biophysics research for twenty-five years, and earned his PhD in materials science and engineering from Johns Hopkins University.
Quantitative Understanding of Biosystems
Title | Quantitative Understanding of Biosystems PDF eBook |
Author | Thomas M. Nordlund |
Publisher | CRC Press |
Pages | 586 |
Release | 2011-06-30 |
Genre | Science |
ISBN | 1420089730 |
Quantitative Understanding of Biosystems: An Introduction to Biophysics focuses on the behavior and properties of microscopic structures that underlie living systems. It clearly describes the biological physics of macromolecules, subcellular structures, and whole cells, including interactions with light. Providing broad coverage of physics, chemistry, biology, and mathematics, this color text features: Mathematical and computational tools—graphing, calculus, simple differential equations, diagrammatic analysis, and visualization tools Randomness, variation, statistical mechanics, distributions, and spectra The biological micro- and nanoworld—structures, processes, and the physical laws Quantum effects—photosynthesis, UV damage, electron and energy transfer, and spectroscopic characterization of biological structures Through its active learning approach, the text encourages practical comprehension of the behavior of biosystems, rather than knowledge of the latest research. The author includes graph- and diagram-centered physics and mathematics, simple software, frequent checks of understanding, and a repetition of important ideas at higher levels or from different points of view. After completing this book, students will gain significant computational and project experience and become competent at quantitatively characterizing biosystems. CD-ROM Resource The accompanying CD contains multimedia learning tools, such as video clips and animations, that illustrate intrinsically dynamic processes. For students inexperienced in the application of mathematics and physical principles to naturally occurring phenomena, this multimedia component emphasizes what is most obvious about biological systems: living things move. Students can also manipulate and re-program the included Excel graphs.
Advanced Quantitative Microbiology for Foods and Biosystems
Title | Advanced Quantitative Microbiology for Foods and Biosystems PDF eBook |
Author | Micha Peleg |
Publisher | CRC Press |
Pages | 457 |
Release | 2006-04-12 |
Genre | Technology & Engineering |
ISBN | 1420005375 |
Presenting a novel view of the quantitative modeling of microbial growth and inactivation patterns in food, water, and biosystems, Advanced Quantitative Microbiology for Foods and Biosystems: Models for Predicting Growth and Inactivation describes new models for estimating microbial growth and survival. The author covers traditional and alte
Entropy and Free Energy in Structural Biology
Title | Entropy and Free Energy in Structural Biology PDF eBook |
Author | Hagai Meirovitch |
Publisher | CRC Press |
Pages | 348 |
Release | 2020-08-14 |
Genre | Computers |
ISBN | 1000072320 |
Nuclear Structure Physics connects to some of our fundamental questions about the creation of the universe and its basic constituents. At the same time, precise knowledge on the subject has led to the development of many important tools for humankind such as proton therapy and radioactive dating, among others. This book has chapters on some of the crucial and trending research topics in nuclear structure, including the nuclei lying on the extremes of spin, isospin and mass. A better theoretical understanding of these topics is important beyond the confines of the nuclear structure community. Additionally, the book will showcase the applicability and success of the different nuclear effective interaction parameters near the drip line, where hints for level reordering have already been seen, and where one can test the isospin-dependence of the interaction. The book offers comprehensive coverage of the most essential topics, including: • Nuclear Structure of Nuclei at or Near Drip-Lines • Synthesis challenges and properties of Superheavy nuclei • Nuclear Structure and Nuclear models - Ab-initio calculations, cluster models, Shell-model/DSM, RMF, Skyrme • Shell Closure, Magicity and other novel features of nuclei at extremes • Structure of Toroidal, Bubble Nuclei, halo and other exotic nuclei These topics are not only very interesting from a theoretical nuclear physics perspective but are also quite complimentary for ongoing nuclear physics experimental programs worldwide. The book chapters, written by experienced and well-known researchers/experts, will be helpful for master students, graduate students and researchers and serve as a standard and up-to-date research reference book on the topics covered.
Metabolism and Medicine
Title | Metabolism and Medicine PDF eBook |
Author | Brian Fertig |
Publisher | CRC Press |
Pages | 369 |
Release | 2022-01-25 |
Genre | Science |
ISBN | 1000472132 |
Chronic disease states of aging should be viewed through the prism of metabolism and biophysical processes at all levels of physiological organization present in the human body. This book describes the building blocks of understanding from a reasonable but not high-level technical language viewpoint, employing the perspective of a clinical physician. It brings together concepts from five specific branches of physics relevant to biology and medicine, namely, biophysics, classical electromagnetism, thermodynamics, systems biology and quantum mechanics. Key Features: Broad and up-to-date overview of the field of metabolism, especially connecting the spectrum of topics that range from modern physical underpinnings with cell biology to clinical practice. Provides a deeper basic science and interdisciplinary understanding of biological systems that broaden the perspectives and therapeutic problem solving. Introduces the concept of the Physiological Fitness Landscape, which is inspired by the physics of phase transitions This first volume in a two-volume set, primarily targets an audience of clinical and science students, biomedical researchers and physicians who would benefit from understanding each other’s language.
Introductory Science of Alcoholic Beverages
Title | Introductory Science of Alcoholic Beverages PDF eBook |
Author | Masaru Kuno |
Publisher | CRC Press |
Pages | 388 |
Release | 2022-11-14 |
Genre | Science |
ISBN | 1000779483 |
Introductory Science of Alcoholic Beverages provides readers an engaging introduction to the science behind beer, wine, and spirits. It illustrates not only the chemical principles that underlie what alcoholic beverages are, why they are the way they are and what they contain, but also frames them within the context of historical and societal developments. Discussed chapter topics include introductions to beer, wine, and spirits; the principles behind fermentation and distillation; and overviews of how each beverage class is made. The chapters highlight the unique chemistries that lend beer, wine, and spirits their individuality, as well as the key chemicals that impart their characteristic aroma and flavor profiles. This book goes beyond focused descriptions of individual alcoholic beverages by summarizing their common chemical lineage and illuminating the universal scientific principles that underpin them. It will be of interest to students of physics and chemistry, as well as enthusiasts and connoisseurs of beer, wine, and spirits.
Quantitative Understanding of Biosystems
Title | Quantitative Understanding of Biosystems PDF eBook |
Author | Thomas M. Nordlund |
Publisher | CRC Press |
Pages | 608 |
Release | 2019-04-16 |
Genre | Science |
ISBN | 135180118X |
Praise for the prior edition "The author has done a magnificent job... this book is highly recommended for introducing biophysics to the motivated and curious undergraduate student." ―Contemporary Physics "a terrific text ... will enable students to understand the significance of biological parameters through quantitative examples―a modern way of learning biophysics." ―American Journal of Physics "A superb pedagogical textbook... Full-color illustrations aid students in their understanding" ―Midwest Book Review This new edition provides a complete update to the most accessible yet thorough introduction to the physical and quantitative aspects of biological systems and processes involving macromolecules, subcellular structures, and whole cells. It includes two brand new chapters covering experimental techniques, especially atomic force microscopy, complementing the updated coverage of mathematical and computational tools. The authors have also incorporated additions to the multimedia component of video clips and animations, as well as interactive diagrams and graphs. Key Features: Illustrates biological examples with estimates and calculations of biophysical parameters. Features two brand-new chapters on experimental methods, a general overview and focused introduction to atomic force microscopy. Includes new coverage of important topics such as measures of DNA twist, images of nanoparticle assembly, and novel optical and electron nanoscopy. Provides a guide to investigating current expert biophysical research. Enhanced self-study problems and an updated glossary of terms.