Quantitative Imaging for Clinical Decisions

Quantitative Imaging for Clinical Decisions
Title Quantitative Imaging for Clinical Decisions PDF eBook
Author Nandita Maria deSouza
Publisher Frontiers Media SA
Pages 124
Release 2022-08-19
Genre Medical
ISBN 2889746763

Download Quantitative Imaging for Clinical Decisions Book in PDF, Epub and Kindle

Quantitative Magnetic Resonance Imaging

Quantitative Magnetic Resonance Imaging
Title Quantitative Magnetic Resonance Imaging PDF eBook
Author Nicole Seiberlich
Publisher Academic Press
Pages 1094
Release 2020-11-18
Genre Computers
ISBN 0128170581

Download Quantitative Magnetic Resonance Imaging Book in PDF, Epub and Kindle

Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging
Title Artificial Intelligence in Medical Imaging PDF eBook
Author Erik R. Ranschaert
Publisher Springer
Pages 369
Release 2019-01-29
Genre Medical
ISBN 3319948784

Download Artificial Intelligence in Medical Imaging Book in PDF, Epub and Kindle

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Functional Neuromarkers for Psychiatry

Functional Neuromarkers for Psychiatry
Title Functional Neuromarkers for Psychiatry PDF eBook
Author Juri D. Kropotov
Publisher Academic Press
Pages 500
Release 2016-05-03
Genre Science
ISBN 0124105203

Download Functional Neuromarkers for Psychiatry Book in PDF, Epub and Kindle

Functional Neuromarkers for Psychiatry explores recent advances in neuroscience that have allowed scientists to discover functional neuromarkers of psychiatric disorders. These neuromarkers include brain activation patterns seen via fMRI, PET, qEEG, and ERPs. The book examines these neuromarkers in detail—what to look for, how to use them in clinical practice, and the promise they provide toward early detection, prevention, and personalized treatment of mental disorders. The neuromarkers identified in this book have a diagnostic sensitivity and specificity higher than 80%. They are reliable, reproducible, inexpensive to measure, noninvasive, and have been confirmed by at least two independent studies. The book focuses primarily on the analysis of EEG and ERPs. It elucidates the neuronal mechanisms that generate EEG spontaneous rhythms and explores the functional meaning of ERP components in cognitive tasks. The functional neuromarkers for ADHD, schizophrenia, and obsessive-compulsive disorder are reviewed in detail. The book highlights how to use these functional neuromarkers for diagnosis, personalized neurotherapy, and monitoring treatment results. - Identifies specific brain activation patterns that are neuromarkers for psychiatric disorders - Includes neuromarkers as seen via fMRI, PET, qEEG, and ERPs - Addresses neuromarkers for ADHD, schizophrenia, and OCD in detail - Provides information on using neuromarkers for diagnosis and/or personalized treatment

Quantitative Nuclear Medicine Imaging

Quantitative Nuclear Medicine Imaging
Title Quantitative Nuclear Medicine Imaging PDF eBook
Author International Atomic Energy Agency
Publisher
Pages 59
Release 2014
Genre Medical
ISBN 9789201415103

Download Quantitative Nuclear Medicine Imaging Book in PDF, Epub and Kindle

This publication reviews the current state of the art of image quantification and provides a solid background of tools and methods to medical physicists and other related professionals who are faced with quantification of radionuclide distribution in clinical practice. It describes and analyses the physical effects that degrade image quality and affect the accuracy of quantification, and describes methods to compensate for them in planar, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) images.

DICOM Structured Reporting

DICOM Structured Reporting
Title DICOM Structured Reporting PDF eBook
Author David A. Clunie
Publisher PixelMed Publishing
Pages 396
Release 2000
Genre Communication in medicine
ISBN 0970136900

Download DICOM Structured Reporting Book in PDF, Epub and Kindle

Radiomics and Radiogenomics

Radiomics and Radiogenomics
Title Radiomics and Radiogenomics PDF eBook
Author Ruijiang Li
Publisher CRC Press
Pages 484
Release 2019-07-09
Genre Science
ISBN 1351208268

Download Radiomics and Radiogenomics Book in PDF, Epub and Kindle

Radiomics and Radiogenomics: Technical Basis and Clinical Applications provides a first summary of the overlapping fields of radiomics and radiogenomics, showcasing how they are being used to evaluate disease characteristics and correlate with treatment response and patient prognosis. It explains the fundamental principles, technical bases, and clinical applications with a focus on oncology. The book’s expert authors present computational approaches for extracting imaging features that help to detect and characterize disease tissues for improving diagnosis, prognosis, and evaluation of therapy response. This book is intended for audiences including imaging scientists, medical physicists, as well as medical professionals and specialists such as diagnostic radiologists, radiation oncologists, and medical oncologists. Features Provides a first complete overview of the technical underpinnings and clinical applications of radiomics and radiogenomics Shows how they are improving diagnostic and prognostic decisions with greater efficacy Discusses the image informatics, quantitative imaging, feature extraction, predictive modeling, software tools, and other key areas Covers applications in oncology and beyond, covering all major disease sites in separate chapters Includes an introduction to basic principles and discussion of emerging research directions with a roadmap to clinical translation