Qualitative Theory of Differential Equations

Qualitative Theory of Differential Equations
Title Qualitative Theory of Differential Equations PDF eBook
Author Viktor Vladimirovich Nemytskii
Publisher
Pages 0
Release 2016-04-19
Genre
ISBN 9780691652283

Download Qualitative Theory of Differential Equations Book in PDF, Epub and Kindle

Book 22 in the Princeton Mathematical Series. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

The Qualitative Theory of Ordinary Differential Equations

The Qualitative Theory of Ordinary Differential Equations
Title The Qualitative Theory of Ordinary Differential Equations PDF eBook
Author Fred Brauer
Publisher Courier Corporation
Pages 325
Release 2012-12-11
Genre Mathematics
ISBN 0486151514

Download The Qualitative Theory of Ordinary Differential Equations Book in PDF, Epub and Kindle

Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Focuses on stability theory and its applications to oscillation phenomena, self-excited oscillations, more. Includes exercises.

Ordinary Differential Equations

Ordinary Differential Equations
Title Ordinary Differential Equations PDF eBook
Author Luis Barreira
Publisher American Mathematical Society
Pages 264
Release 2023-05-17
Genre Mathematics
ISBN 1470473860

Download Ordinary Differential Equations Book in PDF, Epub and Kindle

This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.

A First Course in the Qualitative Theory of Differential Equations

A First Course in the Qualitative Theory of Differential Equations
Title A First Course in the Qualitative Theory of Differential Equations PDF eBook
Author James Hetao Liu
Publisher
Pages 584
Release 2003
Genre Juvenile Nonfiction
ISBN

Download A First Course in the Qualitative Theory of Differential Equations Book in PDF, Epub and Kindle

This book provides a complete analysis of those subjects that are of fundamental importance to the qualitative theory of differential equations and related to current research-including details that other books in the field tend to overlook. Chapters 1-7 cover the basic qualitative properties concerning existence and uniqueness, structures of solutions, phase portraits, stability, bifurcation and chaos. Chapters 8-12 cover stability, dynamical systems, and bounded and periodic solutions. A good reference book for teachers, researchers, and other professionals.

Qualitative Theory of Differential Equations

Qualitative Theory of Differential Equations
Title Qualitative Theory of Differential Equations PDF eBook
Author Zhifen Zhang
Publisher American Mathematical Soc.
Pages 480
Release 1992
Genre Mathematics
ISBN 0821841831

Download Qualitative Theory of Differential Equations Book in PDF, Epub and Kindle

Subriemannian geometries, also known as Carnot-Caratheodory geometries, can be viewed as limits of Riemannian geometries. They also arise in physical phenomenon involving ``geometric phases'' or holonomy. Very roughly speaking, a subriemannian geometry consists of a manifold endowed with a distribution (meaning a $k$-plane field, or subbundle of the tangent bundle), called horizontal together with an inner product on that distribution. If $k=n$, the dimension of the manifold, we get the usual Riemannian geometry. Given a subriemannian geometry, we can define the distance between two points just as in the Riemannian case, except we are only allowed to travel along the horizontal lines between two points. The book is devoted to the study of subriemannian geometries, their geodesics, and their applications. It starts with the simplest nontrivial example of a subriemannian geometry: the two-dimensional isoperimetric problem reformulated as a problem of finding subriemannian geodesics. Among topics discussed in other chapters of the first part of the book the author mentions an elementary exposition of Gromov's surprising idea to use subriemannian geometry for proving a theorem in discrete group theory and Cartan's method of equivalence applied to the problem of understanding invariants (diffeomorphism types) of distributions. There is also a chapter devoted to open problems. The second part of the book is devoted to applications of subriemannian geometry. In particular, the author describes in detail the following four physical problems: Berry's phase in quantum mechanics, the problem of a falling cat righting herself, that of a microorganism swimming, and a phase problem arising in the $N$-body problem. He shows that all these problems can be studied using the same underlying type of subriemannian geometry: that of a principal bundle endowed with $G$-invariant metrics. Reading the book requires introductory knowledge of differential geometry, and it can serve as a good introduction to this new, exciting area of mathematics. This book provides an introduction to and a comprehensive study of the qualitative theory of ordinary differential equations. It begins with fundamental theorems on existence, uniqueness, and initial conditions, and discusses basic principles in dynamical systems and Poincare-Bendixson theory. The authors present a careful analysis of solutions near critical points of linear and nonlinear planar systems and discuss indices of planar critical points. A very thorough study of limit cycles is given, including many results on quadratic systems and recent developments in China. Other topics included are: the critical point at infinity, harmonic solutions for periodic differential equations, systems of ordinary differential equations on the torus, and structural stability for systems on two-dimensional manifolds. This books is accessible to graduate students and advanced undergraduates and is also of interest to researchers in this area. Exercises are included at the end of each chapter.

General Problem of the Stability Of Motion

General Problem of the Stability Of Motion
Title General Problem of the Stability Of Motion PDF eBook
Author A M Lyapunov
Publisher CRC Press
Pages 284
Release 1992-08-28
Genre Science
ISBN 9780748400621

Download General Problem of the Stability Of Motion Book in PDF, Epub and Kindle

This book makes more widely accessible the text of Lyapunov's major memoir of the general problem of the stability of motion. Translated by A. T. Fuller (University of Cambridge), the work is now available for the first time in the English language, and marked the centenary of the Russian publication in the late 1800s. Including a biography of Lyapunov and a comprehensive bibliography of his work, this excellent volume will prove to be of fundamental interest to all those concerned with the concept of the stability of motion, boundaries of stability, and with nonlinear dynamics.

Qualitative Theory of Planar Differential Systems

Qualitative Theory of Planar Differential Systems
Title Qualitative Theory of Planar Differential Systems PDF eBook
Author Freddy Dumortier
Publisher Springer Science & Business Media
Pages 309
Release 2006-10-13
Genre Mathematics
ISBN 3540329021

Download Qualitative Theory of Planar Differential Systems Book in PDF, Epub and Kindle

This book deals with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems.