Quadratic Forms and Their Applications
Title | Quadratic Forms and Their Applications PDF eBook |
Author | Eva Bayer-Fluckiger |
Publisher | American Mathematical Soc. |
Pages | 330 |
Release | 2000 |
Genre | Mathematics |
ISBN | 0821827790 |
This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.
Quadratic Forms with Applications to Algebraic Geometry and Topology
Title | Quadratic Forms with Applications to Algebraic Geometry and Topology PDF eBook |
Author | Albrecht Pfister |
Publisher | Cambridge University Press |
Pages | 191 |
Release | 1995-09-28 |
Genre | Mathematics |
ISBN | 0521467551 |
A gem of a book bringing together 30 years worth of results that are certain to interest anyone whose research touches on quadratic forms.
Binary Quadratic Forms
Title | Binary Quadratic Forms PDF eBook |
Author | Johannes Buchmann |
Publisher | Springer Science & Business Media |
Pages | 328 |
Release | 2007-06-22 |
Genre | Mathematics |
ISBN | 3540463682 |
The book deals with algorithmic problems related to binary quadratic forms. It uniquely focuses on the algorithmic aspects of the theory. The book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography and requires only basic mathematical knowledge. The author is a world leader in number theory.
Quadratic Forms
Title | Quadratic Forms PDF eBook |
Author | Michael Barot |
Publisher | |
Pages | |
Release | 2019 |
Genre | Forms, Quadratic |
ISBN | 9783030056285 |
This monograph presents combinatorial and numerical issues on integral quadratic forms as originally obtained in the context of representation theory of algebras and derived categories. Some of these beautiful results remain practically unknown to students and scholars, and are scattered in papers written between 1970 and the present day. Besides the many classical results, the book also encompasses a few new results and generalizations. The material presented will appeal to a wide group of researchers (in representation theory of algebras, Lie theory, number theory and graph theory) and, due to its accessible nature and the many exercises provided, also to undergraduate and graduate students with a solid foundation in linear algebra and some familiarity on graph theory.
Basic Quadratic Forms
Title | Basic Quadratic Forms PDF eBook |
Author | Larry J. Gerstein |
Publisher | American Mathematical Soc. |
Pages | 280 |
Release | 2008-01-01 |
Genre | Mathematics |
ISBN | 9780821884072 |
The arithmetic theory of quadratic forms is a rich branch of number theory that has had important applications to several areas of pure mathematics - particularly group theory and topology - as well as to cryptography and coding theory. This book is a self-contained introduction to quadratic forms that is based on graduate courses the author has taught many times. It leads the reader from foundation material up to topics of current research interest - with special attention to the theory over the integers and over polynomial rings in one variable over a field - and requires only a basic background in linear and abstract algebra as a prerequisite. Whenever possible, concrete constructions are chosen over more abstract arguments. The book includes many exercises and explicit examples, and it is appropriate as a textbook for graduate courses or for independent study. To facilitate further study, a guide to the extensive literature on quadratic forms is provided.
Computational Geometry of Positive Definite Quadratic Forms
Title | Computational Geometry of Positive Definite Quadratic Forms PDF eBook |
Author | Achill Schurmann |
Publisher | American Mathematical Soc. |
Pages | 183 |
Release | 2009 |
Genre | Mathematics |
ISBN | 082184735X |
"Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification of totally real thin number fields, connections to the Minkowski conjecture, and the discovery of new, sometimes surprising, properties of exceptional structures such as the Leech lattice or the root lattices." "Throughout this book, special attention is paid to algorithms and computability, allowing computer-assisted treatments. Although dealing with relatively classical topics that have been worked on extensively by numerous authors, this book is exemplary in showing how computers may help to gain new insights."--BOOK JACKET.
Bilinear Algebra
Title | Bilinear Algebra PDF eBook |
Author | Kazimierz Szymiczek |
Publisher | CRC Press |
Pages | 508 |
Release | 1997-09-05 |
Genre | Mathematics |
ISBN | 9789056990763 |
Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.