$q$-Series with Applications to Combinatorics, Number Theory, and Physics

$q$-Series with Applications to Combinatorics, Number Theory, and Physics
Title $q$-Series with Applications to Combinatorics, Number Theory, and Physics PDF eBook
Author Bruce C. Berndt
Publisher American Mathematical Soc.
Pages 290
Release 2001
Genre Mathematics
ISBN 0821827464

Download $q$-Series with Applications to Combinatorics, Number Theory, and Physics Book in PDF, Epub and Kindle

The subject of $q$-series can be said to begin with Euler and his pentagonal number theorem. In fact, $q$-series are sometimes called Eulerian series. Contributions were made by Gauss, Jacobi, and Cauchy, but the first attempt at a systematic development, especially from the point of view of studying series with the products in the summands, was made by E. Heine in 1847. In the latter part of the nineteenth and in the early part of the twentieth centuries, two Englishmathematicians, L. J. Rogers and F. H. Jackson, made fundamental contributions. In 1940, G. H. Hardy described what we now call Ramanujan's famous $ 1\psi 1$ summation theorem as ``a remarkable formula with many parameters.'' This is now one of the fundamental theorems of the subject. Despite humble beginnings,the subject of $q$-series has flourished in the past three decades, particularly with its applications to combinatorics, number theory, and physics. During the year 2000, the University of Illinois embraced The Millennial Year in Number Theory. One of the events that year was the conference $q$-Series with Applications to Combinatorics, Number Theory, and Physics. This event gathered mathematicians from the world over to lecture and discuss their research. This volume presents nineteen of thepapers presented at the conference. The excellent lectures that are included chart pathways into the future and survey the numerous applications of $q$-series to combinatorics, number theory, and physics.

$q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra

$q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra
Title $q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra PDF eBook
Author George E. Andrews
Publisher American Mathematical Soc.
Pages 144
Release 1986
Genre Mathematics
ISBN 0821807161

Download $q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra Book in PDF, Epub and Kindle

Integrates developments and related applications in $q$-series with a historical development of the field. This book develops important analytic topics (Bailey chains, integrals, and constant terms) and applications to additive number theory.

Combinatorial Number Theory

Combinatorial Number Theory
Title Combinatorial Number Theory PDF eBook
Author Bruce Landman
Publisher Walter de Gruyter
Pages 501
Release 2011-12-22
Genre Mathematics
ISBN 3110925095

Download Combinatorial Number Theory Book in PDF, Epub and Kindle

This carefully edited volume contains selected refereed papers based on lectures presented by many distinguished speakers at the "Integers Conference 2005", an international conference in combinatorial number theory. The conference was held in celebration of the 70th birthday of Ronald Graham, a leader in several fields of mathematics.

Partitions, q-Series, and Modular Forms

Partitions, q-Series, and Modular Forms
Title Partitions, q-Series, and Modular Forms PDF eBook
Author Krishnaswami Alladi
Publisher Springer Science & Business Media
Pages 233
Release 2011-11-01
Genre Mathematics
ISBN 1461400287

Download Partitions, q-Series, and Modular Forms Book in PDF, Epub and Kindle

Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.

Current Trends in Scientific Computing

Current Trends in Scientific Computing
Title Current Trends in Scientific Computing PDF eBook
Author Zhangxin Chen
Publisher American Mathematical Soc.
Pages 386
Release 2003
Genre Mathematics
ISBN 0821832611

Download Current Trends in Scientific Computing Book in PDF, Epub and Kindle

This volume contains 36 research papers written by prominent researchers. The papers are based on a large satellite conference on scientific computing held at the International Congress of Mathematics (ICM) in Xi'an, China. Topics covered include a variety of subjects in modern scientific computing and its applications, such as numerical discretization methods, linear solvers, parallel computing, high performance computing, and applications to solid and fluid mechanics, energy, environment, and semiconductors. The book will serve as an excellent reference work for graduate students and researchers working with scientific computing for problems in science and engineering.

q-Series and Partitions

q-Series and Partitions
Title q-Series and Partitions PDF eBook
Author Dennis Stanton
Publisher Springer Science & Business Media
Pages 218
Release 2012-12-06
Genre Mathematics
ISBN 146840637X

Download q-Series and Partitions Book in PDF, Epub and Kindle

This IMA Volume in Mathematics and its Applications q-Series and Partitions is based on the proceedings of a workshop which was an integral part of the 1987-88 IMA program on APPLIED COMBINATORICS. We are grateful to the Scientific Committee: Victor Klee (Chairman), Daniel Kleitman, Dijen Ray-Chaudhuri and Dennis Stanton for planning and implementing an exciting and stimulating year long program. We especially thank the Workshop Organizer, Dennis Stanton, for organizing a workshop which brought together many of the major figures in a variety of research fields in which q-series and partitions are used. A vner Friedman Willard Miller, Jr. PREFACE This volume contains the Proceedings of the Workshop on q-Series and Parti tions held at the IMA on March 7-11, 1988. Also included are papers by Goodman and O'Hara, Macdonald, and Zeilberger on unimodality. This work was of substan tial interest and discussed by many participants in the Workshop. The papers have been grouped into four parts: identities, unimodality of Gaus sian polynomials, constant term problems and related integrals, and orthogonal polynomials. They represent a cross section of the recent work on q-series includ ing: partitions, combinatorics, Lie algebras, analysis, and mathematical physics. I would like to thank the staff of the IMA, and its directors, Avner Friedman and Willard Miller, Jr., for providing a wonderful environment for the Workshop. Patricia Brick and Kaye Smith prepared the manuscripts.

$q$-Difference Operators, Orthogonal Polynomials, and Symmetric Expansions

$q$-Difference Operators, Orthogonal Polynomials, and Symmetric Expansions
Title $q$-Difference Operators, Orthogonal Polynomials, and Symmetric Expansions PDF eBook
Author Douglas Bowman
Publisher American Mathematical Soc.
Pages 73
Release 2002
Genre Mathematics
ISBN 082182774X

Download $q$-Difference Operators, Orthogonal Polynomials, and Symmetric Expansions Book in PDF, Epub and Kindle

The author explores ramifications and extensions of a $q$-difference operator method first used by L.J. Rogers for deriving relationships between special functions involving certain fundamental $q$-symmetric polynomials. In special cases these symmetric polynomials reduce to well-known classes of orthogonal polynomials. A number of basic properties of these polynomials follow from this approach. This leads naturally to the evaluation of the Askey-Wilson integral and generalizations. Expansions of certain generalized basic hypergeometric functions in terms of the symmetric polynomials are also found. This provides a quick route to understanding the group structure generated by iterating the two-term transformations of these functions. Some infrastructure is also laid for more general investigations in the future