Pure Metric Geometry
Title | Pure Metric Geometry PDF eBook |
Author | Anton Petrunin |
Publisher | Springer Nature |
Pages | 107 |
Release | 2023-12-23 |
Genre | Mathematics |
ISBN | 3031391624 |
This book serves as an introductory asset for learning metric geometry by delivering an in-depth examination of key constructions and providing an analysis of universal spaces, injective spaces, the Gromov-Hausdorff convergence, and ultralimits. This book illustrates basic examples of domestic affairs of metric spaces, this includes Alexandrov geometry, geometric group theory, metric-measure spaces and optimal transport. Researchers in metric geometry will find this book appealing and helpful, in addition to graduate students in mathematics, and advanced undergraduate students in need of an introduction to metric geometry. Any previous knowledge of classical geometry, differential geometry, topology, and real analysis will be useful in understanding the presented topics.
A Course in Metric Geometry
Title | A Course in Metric Geometry PDF eBook |
Author | Dmitri Burago |
Publisher | American Mathematical Soc. |
Pages | 434 |
Release | 2001 |
Genre | Mathematics |
ISBN | 0821821296 |
"Metric geometry" is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Caratheodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces).
Probabilistic Approach to Geometry
Title | Probabilistic Approach to Geometry PDF eBook |
Author | Motoko Kotani |
Publisher | Advanced Studies in Pure Mathe |
Pages | 514 |
Release | 2010-03 |
Genre | Mathematics |
ISBN | 9784931469587 |
The first Seasonal Institute of the Mathematical Society of Japan (MSJ-SI) “Probabilistic Approach to Geometry” was held at Kyoto University, Japan, on 28th July 2008 - 8th August, 2008. The conference aimed to make interactions between Geometry and Probability Theory and seek for new directions of those research areas. This volume contains the proceedings, selected research articles based on the talks, including survey articles on random groups, rough paths, and heat kernels by the survey lecturers in the conference. The readers will benefit of exploring in this developing research area.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America
Lectures on Symplectic Geometry
Title | Lectures on Symplectic Geometry PDF eBook |
Author | Ana Cannas da Silva |
Publisher | Springer |
Pages | 240 |
Release | 2004-10-27 |
Genre | Mathematics |
ISBN | 354045330X |
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
An Invitation to Alexandrov Geometry
Title | An Invitation to Alexandrov Geometry PDF eBook |
Author | Stephanie Alexander |
Publisher | Springer |
Pages | 95 |
Release | 2019-05-08 |
Genre | Mathematics |
ISBN | 3030053121 |
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.
Alexandrov Geometry
Title | Alexandrov Geometry PDF eBook |
Author | Stephanie Alexander |
Publisher | American Mathematical Society |
Pages | 303 |
Release | 2024-05-24 |
Genre | Mathematics |
ISBN | 1470475367 |
Alexandrov spaces are defined via axioms similar to those of the Euclid axioms but where certain equalities are replaced with inequalities. Depending on the signs of the inequalities, we obtain Alexandrov spaces with curvature bounded above (CBA) and curvature bounded below (CBB). Even though the definitions of the two classes of spaces are similar, their properties and known applications are quite different. The goal of this book is to give a comprehensive exposition of the structure theory of Alexandrov spaces with curvature bounded above and below. It includes all the basic material as well as selected topics inspired by considering Alexandrov spaces with CBA and with CBB simultaneously. The book also includes an extensive problem list with solutions indicated for every problem.
Gradient Flows
Title | Gradient Flows PDF eBook |
Author | Luigi Ambrosio |
Publisher | Springer Science & Business Media |
Pages | 333 |
Release | 2008-10-29 |
Genre | Mathematics |
ISBN | 376438722X |
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.