Proton and Charged Particle Radiotherapy
Title | Proton and Charged Particle Radiotherapy PDF eBook |
Author | Thomas F. De Laney |
Publisher | Lippincott Williams & Wilkins |
Pages | 298 |
Release | 2008 |
Genre | Medical |
ISBN | 9780781765527 |
This volume is the first comprehensive and practical clinical reference on proton and charged particle radiotherapy. The first half of the book explains the treatment delivery systems used, offers detailed guidance on treatment planning techniques, examines key clinical issues in proton radiotherapy, and reviews recent experience with heavier charged particle radiotherapy. The second half of the book offers "how-to" information on treatment of pediatric tumors, lymphomas, and tumors of the central nervous system, eye, skull base, cervical spine, bone and soft tissue, paranasal sinus, nasal cavity, nasopharynx, oropharynx, oral cavity, salivary glands, prostate, lung, gastrointestinal tract, female reproductive tract, and breast. More than 100 full-color illustrations complement the text.
Proton and Charged Particle Radiotherapy
Title | Proton and Charged Particle Radiotherapy PDF eBook |
Author | Thomas F. DeLaney |
Publisher | |
Pages | 288 |
Release | 2015-04-24 |
Genre | Cancer |
ISBN | 9781469874623 |
This volume is the first comprehensive and practical clinical reference on proton and charged particle radiotherapy. The first half of the book explains the treatment delivery systems used, offers detailed guidance on treatment planning techniques, examines key clinical issues in proton radiotherapy, and reviews recent experience with heavier charged particle radiotherapy. The second half of the book offers ""how-to"" information on treatment of pediatric tumors, lymphomas, and tumors of the central nervous system, eye, skull base, cervical spine, bone and soft tissue, paranasal sinus, nasal c.
Proton Therapy Physics
Title | Proton Therapy Physics PDF eBook |
Author | Harald Paganetti |
Publisher | CRC Press |
Pages | 691 |
Release | 2016-04-19 |
Genre | Medical |
ISBN | 1439836450 |
Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.
Practical Radiation Oncology
Title | Practical Radiation Oncology PDF eBook |
Author | Supriya Mallick |
Publisher | Springer Nature |
Pages | 282 |
Release | 2019-11-25 |
Genre | Medical |
ISBN | 9811500738 |
This book addresses the most relevant aspects of radiation oncology in terms of technical integrity, dose parameters, machine and software specifications, as well as regulatory requirements. Radiation oncology is a unique field that combines physics and biology. As a result, it has not only a clinical aspect, but also a physics aspect and biology aspect, all three of which are inter-related and critical to optimal radiation treatment planning. In addition, radiation oncology involves a host of machines/software. One needs to have a firm command of these machines and their specifications to deliver comprehensive treatment. However, this information is not readily available, which poses serious challenges for students learning the planning aspect of radiation therapy. In response, this book compiles these relevant aspects in a single source. Radiation oncology is a dynamic field, and is continuously evolving. However, tracking down the latest findings is both difficult and time-consuming. Consequently, the book also comprehensively covers the most important trials. Offering an essential ready reference work, it represents a value asset for all radiation oncology practitioners, trainees and students.
Carbon-Ion Radiotherapy
Title | Carbon-Ion Radiotherapy PDF eBook |
Author | Hirohiko Tsujii |
Publisher | Springer Science & Business Media |
Pages | 284 |
Release | 2013-12-25 |
Genre | Medical |
ISBN | 4431544577 |
This book serves as a practical guide for the use of carbon ions in cancer radiotherapy. On the basis of clinical experience with more than 7,000 patients with various types of tumors treated over a period of nearly 20 years at the National Institute of Radiological Sciences, step-by-step procedures and technological development of this modality are highlighted. The book is divided into two sections, the first covering the underlying principles of physics and biology, and the second section is a systematic review by tumor site, concentrating on the role of therapeutic techniques and the pitfalls in treatment planning. Readers will learn of the superior outcomes obtained with carbon-ion therapy for various types of tumors in terms of local control and toxicities. It is essential to understand that the carbon-ion beam is like a two-edged sword: unless it is used properly, it can increase the risk of severe injury to critical organs. In early series of dose-escalation studies, some patients experienced serious adverse effects such as skin ulcers, pneumonitis, intestinal ulcers, and bone necrosis, for which salvage surgery or hospitalization was required. To preclude such detrimental results, the adequacy of therapeutic techniques and dose fractionations was carefully examined in each case. In this way, significant improvements in treatment results have been achieved and major toxicities are no longer observed. With that knowledge, experts in relevant fields expand upon techniques for treatment delivery at each anatomical site, covering indications and optimal treatment planning. With its practical focus, this book will benefit radiation oncologists, medical physicists, medical dosimetrists, radiation therapists, and senior nurses whose work involves radiation therapy, as well as medical oncologists and others who are interested in radiation therapy.
Stereotactic Body Radiation Therapy
Title | Stereotactic Body Radiation Therapy PDF eBook |
Author | Simon S. Lo |
Publisher | Springer Science & Business Media |
Pages | 433 |
Release | 2012-08-28 |
Genre | Medical |
ISBN | 364225604X |
Stereotactic body radiation therapy (SBRT) has emerged as an important innovative treatment for various primary and metastatic cancers. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.
Particle Therapy Technology for Safe Treatment
Title | Particle Therapy Technology for Safe Treatment PDF eBook |
Author | Jay Flanz |
Publisher | CRC Press |
Pages | 492 |
Release | 2022-01-18 |
Genre | Science |
ISBN | 1000528065 |
The path from clinical requirements to technical implementation is filtered by the translation of the modality to the technology. An important part of that filter is that the modality be safe. For that to be the case, it is imperative to understand what clinical parameters affect the safety of a treatment and then determine how the technology can affect those parameters. This book provides a practical introduction to particle therapy. It provides a thorough introduction to the technological tools and their applications and then details the components that are needed to implement them. It explains the foundations of beam production and beam delivery that serve to meet the necessary clinical requirements. It emphasizes the relationship between requirements and implementation, including how safety and quality are considered and implemented in the solution. The reader will learn to better understand what parameters are important to achieve these goals. Particle Therapy Technology for Safe Treatment will be a useful resource for professionals in the field of particle therapy in addition to biomedical engineers and practitioners in the field of beam physics. It can also be used as a textbook for graduate medical physics and beam physics courses. Key Features Presents a practical and accessible journey from application requirements to technical solutions Provides a pedagogic treatment of the underlying technology Describes how safety is to be considered in the application of this technology and how safety and quality can be factored into the overall system Author Bio After receiving his PhD in nuclear physics, Dr. Jacob Flanz was the Accelerator Physics Group leader and Principal Research Scientist at the Massachusetts Institute of Technology (MIT), USA, where he designed the recirculator and the GeV stretcher/storage ring. He joined Massachusetts General Hospital (MGH) and Harvard and became project and technical director of proton therapy, with responsibility for specifications, integration, and commissioning ensuring safe clinical performance. He invented the universal nozzle and led the design and implementation of beam scanning at MGH in 2008, including quality assurance. Dr. Flanz has been involved in several FDA applications for particle therapy. He developed and taught the US Particle Accelerator School course "Medical Applications of Accelerators and Beams." He was cochair of education and is currently the president of the Particle Therapy Co-Operative Group. Exercise solutions to accompany this book can be accessed via the 'Instructor Resources' tab on the book webpage.