Progress in Mixed-gas Joule-Thomson Cryocooling

Progress in Mixed-gas Joule-Thomson Cryocooling
Title Progress in Mixed-gas Joule-Thomson Cryocooling PDF eBook
Author Jennifer AmbeLyn Detlor
Publisher
Pages 0
Release 2022
Genre
ISBN

Download Progress in Mixed-gas Joule-Thomson Cryocooling Book in PDF, Epub and Kindle

Miniature Joule-Thomson (JT) cryocoolers are attractive for many applications due to their small size and resulting fast cool-down time. Finned-tube heat exchangers are the most widely used heat exchanger for miniature JT cryocoolers. The basic configuration, known as a Giauque-Hampson (GH) or coiled tube heat exchanger, involves the high-pressure stream flowing through a finned-tube that is helically coiled upon a cylindrical core while the low-pressure stream flows over the fins in the annular space created by the core and the inner diameter of a shell. Recent advances in technology have increased interest in JT cryocoolers that can provide cooling potential in the temperature ranges of 125 to 150 K. To achieve high efficiency and use a low-cost compressor, the JT cryocooler must provide cooling at low values of pressure ratios and operating pressure. To provide cooling under these conditions, a proper gas mixture must be selected as the working fluid. While it has been suggested that the heat transfer coefficient (htc) of the return stream is a key parameter affecting the behavior of the entire heat exchanger of a mixed-gas Joule-Thomson (MGJT) cryocooler, there is still no data or theory in open literature that characterizes the heat transfer and pressure drop characteristics of two-phase multi-component mixtures on the shell side in these heat exchangers. Beyond the broad goal of investigating gas mixture selection for MGJT cryocoolers, the experimental work in this study aimed to gain insight into these thermal characteristics by developing a test facility capable of measuring the two-phase htc for this geometry at operating conditions of interest to MGJT cryocooling. The capabilities of the test facility were demonstrated with a semi-flammable mixture. The size of the GH heat exchanger prototype and operating parameters of the test facility were consistent with those of interest for MGJT cryocoolers. Measurements of the two-phase htc of the mixed gas on the shell-side of the GH heat exchanger prototype were collected. For the mixture examined, the two-phase htc was found to be between 12 to 19 W/m2-K with uncertainties of approximately 12% for qualities in the range of 0.31 to 0.62. This data reveals that the shell side is the dominant thermal resistance for these operating conditions, even though the fins provide a larger surface area. Therefore, the htc of the mixed gas on the shell-side is crucial for cryocooler design and predicting the overall performance. While only a small amount of data was collected in this study, the data collected clearly demonstrates the need for and importance of developing accurate correlations for two-phase multi-component mixtures on the shell-side of GH heat exchangers for operating conditions consistent with MGJT cryocoolers. A large data collection campaign is proposed and enabled by the test facility developed in this work. Only with these correlations can the effects of the mixture selection on the pressure drop and the effectiveness of the heat exchanger be considered in the design of a MGJT cryocooler for optimal performance.

Miniature Joule-Thomson Cryocooling

Miniature Joule-Thomson Cryocooling
Title Miniature Joule-Thomson Cryocooling PDF eBook
Author Ben-Zion Maytal
Publisher Springer Science & Business Media
Pages 410
Release 2012-09-18
Genre Science
ISBN 144198285X

Download Miniature Joule-Thomson Cryocooling Book in PDF, Epub and Kindle

This book is the first in English being entirely dedicated to Miniature Joule-Thomson Cryocooling. The category of Joule-Thomson (JT) cryocoolers takes us back to the roots of cryogenics, in 1895, with figures like Linde and Hampson. The "cold finger" of these cryocoolers is compact, lacks moving parts, and sustains a large heat flux extraction at a steady temperature. Potentially, they cool down unbeatably fast. For example, cooling to below 100 K (minus 173 Celsius) might be accomplished within only a few seconds by liquefying argon. A level of about 120 K can be reached almost instantly with krypton. Indeed, the species of coolant plays a central role dictating the size, the intensity and the level of cryocooling. It is the JT effect that drives these cryocoolers and reflects the deviation of the "real" gas from the ideal gas properties. The nine chapters of the book are arranged in five parts. •The Common Principle of Cyrocoolers shared across the broad variety of cryocooler types •Theoretical Aspects: the JT effect and its inversion, cooling potential of coolants, the liquefaction process, sizing of heat exchangers, level of pressurization, discharge of pressure vessels • Practical Aspects: modes of operation (fast cooldown, continuous, multi-staging, hybrid cryocoolers), pressure sources, configuration, construction and technologies, flow adjustment, MEMS, open and closed cycle, cooldown process and similarity, transient behavior • Mixed Coolant cryocooling: theory, practice and applications • Special Topics: real gas choked flow rates, gas purity, clog formation, optimal fixed orifice, modeling, cryosurgical devices, warming by the inverse JT effect The theoretical aspects may be of interest not only to those working with cryocoolers but also for others with a general interest in "real" gas thermodynamics, such as, for example, the inversion of the JT effect in its differential and integral forms, and the exceptional behavior of the quantum gases. A detailed list of references for each chapter comprises a broad literature survey. It consists of more than 1,200 relevant publications and 450 related patents. The systematically organized content, arranged under a thorough hierarchy of headings, supported by 227 figures and 41 tables, and accompanied by various chronological notes of evolution, enables readers a friendly interaction with the book. Dr. Ben-Zion Maytal is a Senior Researcher at Rafael-Advanced Defense Systems, Ltd., and an Adjunct Senior Teaching Fellow at the Technion-Israel Institute of Technology, Haifa, Israel. Prof. John M. Pfotenhauer holds a joint appointment in the Departments of Mechanical Engineering and Engineering Physics at the University of Wisconsin - Madison.

Numerical Modeling and Experimental Testing of a Mixed Gas Joule-Thomson Cryocooler

Numerical Modeling and Experimental Testing of a Mixed Gas Joule-Thomson Cryocooler
Title Numerical Modeling and Experimental Testing of a Mixed Gas Joule-Thomson Cryocooler PDF eBook
Author John Frank Pettitt
Publisher
Pages 196
Release 2006
Genre
ISBN

Download Numerical Modeling and Experimental Testing of a Mixed Gas Joule-Thomson Cryocooler Book in PDF, Epub and Kindle

Miniature Joule-Thomson Cryocooling

Miniature Joule-Thomson Cryocooling
Title Miniature Joule-Thomson Cryocooling PDF eBook
Author Ben-Zion Maytal
Publisher Springer Science & Business Media
Pages 410
Release 2012-09-18
Genre Science
ISBN 1441982841

Download Miniature Joule-Thomson Cryocooling Book in PDF, Epub and Kindle

This book is the first in English being entirely dedicated to Miniature Joule-Thomson Cryocooling. The category of Joule-Thomson (JT) cryocoolers takes us back to the roots of cryogenics, in 1895, with figures like Linde and Hampson. The "cold finger" of these cryocoolers is compact, lacks moving parts, and sustains a large heat flux extraction at a steady temperature. Potentially, they cool down unbeatably fast. For example, cooling to below 100 K (minus 173 Celsius) might be accomplished within only a few seconds by liquefying argon. A level of about 120 K can be reached almost instantly with krypton. Indeed, the species of coolant plays a central role dictating the size, the intensity and the level of cryocooling. It is the JT effect that drives these cryocoolers and reflects the deviation of the "real" gas from the ideal gas properties. The nine chapters of the book are arranged in five parts. •The Common Principle of Cyrocoolers shared across the broad variety of cryocooler types •Theoretical Aspects: the JT effect and its inversion, cooling potential of coolants, the liquefaction process, sizing of heat exchangers, level of pressurization, discharge of pressure vessels • Practical Aspects: modes of operation (fast cooldown, continuous, multi-staging, hybrid cryocoolers), pressure sources, configuration, construction and technologies, flow adjustment, MEMS, open and closed cycle, cooldown process and similarity, transient behavior • Mixed Coolant cryocooling: theory, practice and applications • Special Topics: real gas choked flow rates, gas purity, clog formation, optimal fixed orifice, modeling, cryosurgical devices, warming by the inverse JT effect The theoretical aspects may be of interest not only to those working with cryocoolers but also for others with a general interest in "real" gas thermodynamics, such as, for example, the inversion of the JT effect in its differential and integral forms, and the exceptional behavior of the quantum gases. A detailed list of references for each chapter comprises a broad literature survey. It consists of more than 1,200 relevant publications and 450 related patents. The systematically organized content, arranged under a thorough hierarchy of headings, supported by 227 figures and 41 tables, and accompanied by various chronological notes of evolution, enables readers a friendly interaction with the book. Dr. Ben-Zion Maytal is a Senior Researcher at Rafael-Advanced Defense Systems, Ltd., and an Adjunct Senior Teaching Fellow at the Technion-Israel Institute of Technology, Haifa, Israel. Prof. John M. Pfotenhauer holds a joint appointment in the Departments of Mechanical Engineering and Engineering Physics at the University of Wisconsin - Madison.

Empirical Model Improvements for a Mixed Gas Joule-Thomson Cycle with Precooling for Cryosurgery

Empirical Model Improvements for a Mixed Gas Joule-Thomson Cycle with Precooling for Cryosurgery
Title Empirical Model Improvements for a Mixed Gas Joule-Thomson Cycle with Precooling for Cryosurgery PDF eBook
Author Kendra L. Passow
Publisher
Pages 143
Release 2012
Genre
ISBN

Download Empirical Model Improvements for a Mixed Gas Joule-Thomson Cycle with Precooling for Cryosurgery Book in PDF, Epub and Kindle

Mixed-gas Joule-Thomson Sorption Cryocoolers

Mixed-gas Joule-Thomson Sorption Cryocoolers
Title Mixed-gas Joule-Thomson Sorption Cryocoolers PDF eBook
Author Doctor Nir Tzabar
Publisher
Pages 209
Release 2012
Genre
ISBN

Download Mixed-gas Joule-Thomson Sorption Cryocoolers Book in PDF, Epub and Kindle

Cryocoolers

Cryocoolers
Title Cryocoolers PDF eBook
Author Milind D. Atrey
Publisher Springer Nature
Pages 236
Release 2020-02-24
Genre Science
ISBN 3030113078

Download Cryocoolers Book in PDF, Epub and Kindle

This book serves as an introduction to cryocooler technology and describes the principle applications of cryocoolers across a broad range of fields. It covers the specific requirements of these applications, and describes how the advantages and disadvantages of different cryocooler systems are taken into consideration. For example, Stirling coolers tend to be used only in space applications because of their high coefficient of performance, low weight and proven reliability, whilst Gifford-McMahon coolers are used for ground applications, such as in cryopumps and MRI shield cooling applications. Joule-Thomson cryocoolers are used in missile technology because of the fast cool down requirements. The cryocooler field is fast developing and the number of applications are growing because of the increasing costs of the cryogens such as Helium and Neon. The first chapter of the book introduces the different types of cryocoolers, their classification, working principles, and their design aspects, and briefly mentions some of the applications of these systems. This introductory chapter is followed by a number of contributions from prominent international researchers, each describing a specific field of application, the cooling requirements and the cryocooler systems employed. These areas of application include gas liquefaction, space technology, medical science, dilution refrigerators, missile systems, and physics research including particle accelerators. Each chapter describes the cooling requirements based on the end use, the approximate cooling load calculations, the criteria for cryocooler selection, the arrangement for cryocooler placement, the connection of the cooler to the object to be cooled, and includes genuine case studies. Intended primarily for researchers working on cryocoolers, the book will also serve as an introduction to cryocooler technology for students, and a useful reference for those using cryocooler systems in any area of application.