Progress in Inverse Spectral Geometry

Progress in Inverse Spectral Geometry
Title Progress in Inverse Spectral Geometry PDF eBook
Author Stig I. Andersson
Publisher Birkhäuser
Pages 202
Release 2012-12-06
Genre Mathematics
ISBN 3034889380

Download Progress in Inverse Spectral Geometry Book in PDF, Epub and Kindle

Most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t> O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* ®E), locally given by 00 K(x, y; t) = L>-IAk(~k ® 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.

Progress in Inverse Spectral Geometry

Progress in Inverse Spectral Geometry
Title Progress in Inverse Spectral Geometry PDF eBook
Author Stig Ingvar Andersson
Publisher
Pages 196
Release 1997
Genre Inverse problems (Differential equations)
ISBN 9780817657550

Download Progress in Inverse Spectral Geometry Book in PDF, Epub and Kindle

Progress in Inverse Spectral Geometry

Progress in Inverse Spectral Geometry
Title Progress in Inverse Spectral Geometry PDF eBook
Author Stig I Andersson
Publisher
Pages 212
Release 1997-10-01
Genre
ISBN 9783034889391

Download Progress in Inverse Spectral Geometry Book in PDF, Epub and Kindle

Progress in Inverse Spectral Geometry

Progress in Inverse Spectral Geometry
Title Progress in Inverse Spectral Geometry PDF eBook
Author Stig I. Andersson
Publisher Birkhäuser
Pages 197
Release 2012-10-12
Genre Mathematics
ISBN 9783034898355

Download Progress in Inverse Spectral Geometry Book in PDF, Epub and Kindle

most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x,O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt,E* ®E), locally given by 00 K(x,y; t) = L>-IAk(~k ® 'Pk)(X,y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g. , the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.

Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry
Title Old and New Aspects in Spectral Geometry PDF eBook
Author M.-E. Craioveanu
Publisher Springer Science & Business Media
Pages 447
Release 2013-03-14
Genre Mathematics
ISBN 940172475X

Download Old and New Aspects in Spectral Geometry Book in PDF, Epub and Kindle

It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.

Spectral Geometry

Spectral Geometry
Title Spectral Geometry PDF eBook
Author Alex Barnett
Publisher American Mathematical Soc.
Pages 354
Release 2012
Genre Mathematics
ISBN 0821853198

Download Spectral Geometry Book in PDF, Epub and Kindle

This volume contains the proceedings of the International Conference on Spectral Geometry, held July 19-23, 2010, at Dartmouth College, Dartmouth, New Hampshire. Eigenvalue problems involving the Laplace operator on manifolds have proven to be a consistently fertile area of geometric analysis with deep connections to number theory, physics, and applied mathematics. Key questions include the measures to which eigenfunctions of the Laplacian on a Riemannian manifold condense in the limit of large eigenvalue, and the extent to which the eigenvalues and eigenfunctions of a manifold encode its geometry. In this volume, research and expository articles, including those of the plenary speakers Peter Sarnak and Victor Guillemin, address the flurry of recent progress in such areas as quantum unique ergodicity, isospectrality, semiclassical measures, the geometry of nodal lines of eigenfunctions, methods of numerical computation, and spectra of quantum graphs. This volume also contains mini-courses on spectral theory for hyperbolic surfaces, semiclassical analysis, and orbifold spectral geometry that prepared the participants, especially graduate students and young researchers, for conference lectures.

Geometric Methods in Inverse Problems and PDE Control

Geometric Methods in Inverse Problems and PDE Control
Title Geometric Methods in Inverse Problems and PDE Control PDF eBook
Author Chrisopher B. Croke
Publisher Springer Science & Business Media
Pages 334
Release 2012-12-06
Genre Mathematics
ISBN 1468493752

Download Geometric Methods in Inverse Problems and PDE Control Book in PDF, Epub and Kindle

This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume contains a selected number of articles based on lectures delivered at the IMA 2001 Summer Program on "Geometric Methods in Inverse Problems and PDE Control. " The focus of this program was some common techniques used in the study of inverse coefficient problems and control problems for partial differential equations, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef ficient problems for partial differential equations arise in many application areas, for instance in medical imaging, nondestructive testing, and geophys ical prospecting. Control problems involving partial differential equations may arise from the need to optimize a given performance criterion, e. g. , to dampen out undesirable vibrations of a structure , or more generally, to obtain a prescribed behaviour of the dynamics.