Fuel Ethanol Production from Sugarcane

Fuel Ethanol Production from Sugarcane
Title Fuel Ethanol Production from Sugarcane PDF eBook
Author Thalita Peixoto Basso
Publisher BoD – Books on Demand
Pages 232
Release 2019-01-23
Genre Science
ISBN 1789849373

Download Fuel Ethanol Production from Sugarcane Book in PDF, Epub and Kindle

This book offers a broad understanding of bioethanol production from sugarcane, although a few other substrates, except corn, will also be mentioned. The 10 chapters are grouped in five sections. The Fuel Ethanol Production from Sugarcane in Brazil section consists of two chapters dealing with the first-generation ethanol Brazilian industrial process. The Strategies for Sugarcane Bagasse Pretreatment section deals with emerging physicochemical methods for biomass pretreatment, and the non-conventional biomass source for lignocellulosic ethanol production addresses the potential of weed biomass as alternative feedstock. In the Recent Approaches for Increasing Fermentation Efficiency of Lignocellulosic Ethanol section, potential and research progress using thermophile bacteria and yeasts is presented, taking advantage of microorganisms involved in consolidating or simultaneous hydrolysis and fermentation processes. Finally, the Recent Advances in Ethanol Fermentation section presents the use of cold plasma and hydrostatic pressure to increase ethanol production efficiency. Also in this section the use of metabolic-engineered autotrophic cyanobacteria to produce ethanol from carbon dioxide is mentioned.

Biofuels in Brazil

Biofuels in Brazil
Title Biofuels in Brazil PDF eBook
Author Silvio Silvério da Silva
Publisher Springer Science & Business Media
Pages 441
Release 2014-04-02
Genre Science
ISBN 3319050206

Download Biofuels in Brazil Book in PDF, Epub and Kindle

This book discusses the commercialization of biofuels and the Brazilian government policies for the promotion of renewable energy program in Brazil, which could be a learning module for several countries for implementing biofuels policy to improve their socioeconomic status and make them energy independent. Researchers in academia and industries, policy makers, and economic analysts will be assisted by important source of information in their ongoing research and future perspectives. This book will benefit graduate and postgraduate students of chemical and biochemical engineering, forestry, microbiology, biochemistry, biotechnology, applied chemistry, environmental science, sustainable energy, and biotech business disciplines by signifying the applied aspects of bioenergy production from various natural sources and their implications. Graduate and postgraduate students as well as postdoctoral researchers will find clear concepts of feedstock analysis, feedstock degradation, microbial fermentation, genetic engineering, renewable energy generation and storage, climate changes, and techno-economic analysis of biofuels production technologies.

Biofuels, Solar and Wind as Renewable Energy Systems

Biofuels, Solar and Wind as Renewable Energy Systems
Title Biofuels, Solar and Wind as Renewable Energy Systems PDF eBook
Author D. Pimentel
Publisher Springer Science & Business Media
Pages 513
Release 2008-07-22
Genre Technology & Engineering
ISBN 1402086547

Download Biofuels, Solar and Wind as Renewable Energy Systems Book in PDF, Epub and Kindle

The petroleum age began about 150 years ago. Easily available energy has s- ported major advances in agriculture, industry, transportation, and indeed many diverse activities valued by humans. Now world petroleum and natural gas s- plies have peaked and their supplies will slowly decline over the next 40–50 years until depleted. Although small amounts of petroleum and natural gas will remain underground, it will be energetically and economically impossible to extract. In the United States, coal supplies could be available for as long as 40–50 years, depending on how rapidly coal is utilized as a replacement for petroleum and natural gas. Having been comfortable with the security provided by fossil energy, especially petroleum and natural gas, we appear to be slow to recognize the energy crisis in the U. S. and world. Serious energy conservation and research on viable renewable - ergy technologies are needed. Several renewable energy technologies already exist, but sound research is needed to improve their effectiveness and economics. Most of the renewable energy technologies are in uenced by geographic location and face problems of intermittent energy supply and storage. Most renewable technologies require extensive land; a few researchers have even suggested that one-half of all land biomass could be harvested in order to supply the U. S. with 30% of its liquid fuel! Some optimistic investigations of renewable energy have failed to recognize that only 0. 1% of the solar energy is captured annually in the U. S.

Biomass Now

Biomass Now
Title Biomass Now PDF eBook
Author Miodrag Darko Matovic
Publisher BoD – Books on Demand
Pages 464
Release 2013-04-30
Genre Technology & Engineering
ISBN 953511106X

Download Biomass Now Book in PDF, Epub and Kindle

This two-volume book on biomass is a reflection of the increase in biomass related research and applications, driven by overall higher interest in sustainable energy and food sources, by increased awareness of potentials and pitfalls of using biomass for energy, by the concerns for food supply and by multitude of potential biomass uses as a source material in organic chemistry, bringing in the concept of bio-refinery. It reflects the trend in broadening of biomass related research and an increased focus on second-generation bio-fuels. Its total of 40 chapters spans over diverse areas of biomass research, grouped into 9 themes.

Sugarcane Bioethanol

Sugarcane Bioethanol
Title Sugarcane Bioethanol PDF eBook
Author Luís Augusto Barbosa Cortez
Publisher
Pages 994
Release 2010
Genre Business & Economics
ISBN 9788521205302

Download Sugarcane Bioethanol Book in PDF, Epub and Kindle

In Brazil, sugarcane ethanol supplied, in 2009, 17.6 % of the energy for land transportation (excluding railroads)and about 55% of the total energy supplied by liquid fuel for Otto cycle engines. Besides the lower production costs ethanol produced from sugarcane in Brazil has another important advantage: in Central-South Brazil only 1 unit of fossil energy is used for each 8-9 units of energy produced by ethanol from sugarcane. Carbon emissions reduction also benefits from sugarcane ethanol: for each cubic meter of ethanol used as fuel, there is net saving of around 2 t CO2 not emitted to the atmosphere while, at the same time, no SO2 is emitted. Sugarcane was introduced in Brazil in 1532. The "Brazilian model" of producing concomitantly sugar and ethanol, brought important technical benefits and made possible an outstanding increase in the competitiveness in the international market for sugar and ethanol. Today about 50% of the sucrose of sugarcane produced in the country is directed to the production of sugar while another half is used to produce Ethanol. Industrial and academic R&D has helped to increase the productivity of ethanol steadily over the past 35 years, at a rate of 3.2% per year. Productivity gains implied savings of planted area by a factor of 2.6. In 2009/2010 the area planted with sugarcane for Ethanol production was 4.2 Mha, amounting to 1% of the total arable land available in Brazil. About 60% of the Ethanol produced in Brazil comes from the State of Sao Paulo, where the productivity is the highest (around 86 t/ha.year). Most of the recent expansion is happening in the center-west region of the country, in degraded pasture lands. The FAPESP Program for Research on Bioenergy, BIOEN, aims at articulating public and private R&D, using academic and industrial laboratories to advance and apply knowledge in fields related to ethanol production in Brazil. The BIOEN Program has a solid core for supporting academic exploratory research activities that will generate new knowledge and form scientists and professionals essential for advancing industry capacity in ethanol related technologies. On top of this, BIOEN includes partnerships with industry for cooperative R&D activities between industrial and academic laboratories, which are to be co-funded by FAPESP and industry.Federal agencies, such as CNPq, will also co-fund the research.

Sugarcane-based Biofuels and Bioproducts

Sugarcane-based Biofuels and Bioproducts
Title Sugarcane-based Biofuels and Bioproducts PDF eBook
Author Ian O'Hara
Publisher John Wiley & Sons
Pages 406
Release 2016-05-16
Genre Technology & Engineering
ISBN 1118719913

Download Sugarcane-based Biofuels and Bioproducts Book in PDF, Epub and Kindle

Sugarcane has garnered much interest for its potential as a viable renewable energy crop. While the use of sugar juice for ethanol production has been in practice for years, a new focus on using the fibrous co-product known as bagasse for producing renewable fuels and bio-based chemicals is growing in interest. The success of these efforts, and the development of new varieties of energy canes, could greatly increase the use of sugarcane and sugarcane biomass for fuels while enhancing industry sustainability and competitiveness. Sugarcane-Based Biofuels and Bioproducts examines the development of a suite of established and developing biofuels and other renewable products derived from sugarcane and sugarcane-based co-products, such as bagasse. Chapters provide broad-ranging coverage of sugarcane biology, biotechnological advances, and breakthroughs in production and processing techniques. This text brings together essential information regarding the development and utilization of new fuels and bioproducts derived from sugarcane. Authored by experts in the field, Sugarcane-Based Biofuels and Bioproducts is an invaluable resource for researchers studying biofuels, sugarcane, and plant biotechnology as well as sugar and biofuels industry personnel.

Socio-Economic Impacts of Bioenergy Production

Socio-Economic Impacts of Bioenergy Production
Title Socio-Economic Impacts of Bioenergy Production PDF eBook
Author Dominik Rutz
Publisher Springer Science & Business Media
Pages 312
Release 2014-02-23
Genre Science
ISBN 331903829X

Download Socio-Economic Impacts of Bioenergy Production Book in PDF, Epub and Kindle

Around the world, many countries are increasing efforts to promote biomass production for industrial uses including biofuels and bio-products such as chemicals and bio-plastic. Against a backdrop of lively public debate on sustainability, bioenergy wields both positive and negative impacts upon a variety of environmental and socio-economic issues. These include property rights, labor conditions, social welfare, economic wealth, poverty reduction and more. This book discusses the issues and impacts of bioenergy, taking into account the local and regional framework under which bioenergy is produced, touching upon educational level, cultural aspects, the history and economies of the producing countries and an array of policies including environmental and social targets. The book surveys and analyzes global bioenergy production from a number of perspectives. The authors illustrate the complexity of interrelated topics in the bioenergy value chain, ranging from agriculture to conversion processes, as well as from social implications to environmental effects. It goes on to offer insight on future challenges associated with the expected boom of a global bio-based economy, which contributes to the paradigm shift from a fossil-based to a biomass and renewable energy-based economy. The expert contributors include researchers, investors, policy makers, representatives from NGOs and other stakeholders, from Europe, Africa, Asia and Latin America. Their contributions build upon the results of the Global-Bio-Pact project on “Global Assessment of Biomass and Bio-product Impacts on Socio-economics and Sustainability,” which was supported by the European Commission in its 7th Framework Program for Research and Technological Development, conducted from February 2010 to January 2013. The book benefits policy makers, scientists and NGO staffers working in the fields of agriculture, forestry, biotechnology and energy.