Production, Handling and Characterization of Particulate Materials
Title | Production, Handling and Characterization of Particulate Materials PDF eBook |
Author | Henk G. Merkus |
Publisher | Springer |
Pages | 557 |
Release | 2015-11-26 |
Genre | Science |
ISBN | 3319209493 |
This edited volume presents most techniques and methods that have been developed by material scientists, chemists, chemical engineers and physicists for the commercial production of particulate materials, ranging from the millimeter to the nanometer scale. The scope includes the physical and chemical background, experimental optimization of equipment and procedures, as well as an outlook on future methods. The books addresses issues of industrial importance such as specifications, control parameter(s), control strategy, process models, energy consumption and discusses the various techniques in relation to potential applications. In addition to the production processes, all major unit operations and characterization methods are described in this book. It differs from other books which are devoted to a single technique or a single material. Contributors to this book are acknowledged experts in their field. The aim of the book is to facilitate comparison of the different unit operations leading to optimum equipment choices for the production, handling and storage of particulate materials. An advantage of this approach is that unit operations that are common in one field of application are made accessible to other fields. The overall focus is on industrial application and the book includes some concrete examples. The book is an essential resource for students or researchers who work in collaboration with manufacturing industries or who are planning to make the switch from academia to industry.
Processing of Particulate Solids
Title | Processing of Particulate Solids PDF eBook |
Author | J.P. Seville |
Publisher | Springer Science & Business Media |
Pages | 384 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 9400914598 |
Over half of the products of the chemical and process industries are sold in a particulate form. The range of such products is vast: from agrochemicals to pigments, from detergents to foods, from plastics to pharmaceuticals. However, surveys of the performance of processes designed to produce particulate products have consistently shown inadequate design and poor reliability. `Particle technology' is a new subject facing new challenges. Chemical and process engineering is becoming less concerned with the design of plants to produce generic simple chemicals (which are often single phase fluids) and is now more concerned with speciality `effect' chemicals which may often be in particulate form. Chemical and process engineers are also being recruited in increasing numbers into areas outside their tranditional fields, such as the food industry, pharmaceuticals and the manufacture of a wide variety of consumer products. This book has been written to meet their needs. It provides comprehensive coverage of the technology of particulate solids, in a form which is both accessible and concise enough to be useful to engineering and science students in the final year of an undergraduate degree, and at Master's level. Although it was written with students of chemical engineering in mind, it will also be of use and interest to students of other disciplines. It comprises an account of the fundamentals of teh subject, illustrated by worked examples, and followed by a wide range of selected applications.
Particles and Nanoparticles in Pharmaceutical Products
Title | Particles and Nanoparticles in Pharmaceutical Products PDF eBook |
Author | Henk G. Merkus |
Publisher | Springer |
Pages | 455 |
Release | 2018-09-06 |
Genre | Technology & Engineering |
ISBN | 3319941747 |
This edited volume brings together the expertise of numerous specialists on the topic of particles – their physical, chemical, pharmacological and toxicological characteristics – when they are a component of pharmaceutical products and formulations. The book discusses in detail properties such as the composition, size, shape, surface properties and porosity of particles with respect to how they impact the formulations and products in which they are used and the effective delivery of pharmaceutical active ingredients. It considers all dosage forms of pharmaceuticals involving particles, from powders to tablets, creams to ointments, and solutions to dry-powder inhalers, also including the latest nanomedicine products. Further, it discusses examples of particle toxicity, as well as the important subject of pharmaceutical industry regulations, guidelines and legislation. The book is of interest to researchers and practitioners who work on testing and developing pharmaceutical dosage and delivery systems.
Design and Processing of Particulate Products
Title | Design and Processing of Particulate Products PDF eBook |
Author | Jim Litster |
Publisher | Cambridge University Press |
Pages | 343 |
Release | 2016-10-20 |
Genre | Science |
ISBN | 1107007372 |
A unique text providing comprehensive coverage of fundamental particle science, processing and technology. Including quantitative tools, real-world case studies and end-of-chapter problems, it is ideal for students in engineering and applied sciences, as well as for practitioners in a range of industries manufacturing particulate products.
Energetic Materials
Title | Energetic Materials PDF eBook |
Author | Ulrich Teipel |
Publisher | John Wiley & Sons |
Pages | 643 |
Release | 2006-03-06 |
Genre | Science |
ISBN | 3527604936 |
Incorporation of particular components with specialized properties allows one to tailor the end product's properties. For instance, the sensitivity, burning behavior, thermal or mechanical properties or stability of energetic materials can be affected and even controllably varied through incorporation of such ingredients. This book examines particle technologies as applied to energetic materials such as propellants and explosives, thus filling a void in the literature on this subject. Following an introduction covering general features of energetic materials, the first section of this book describes methods of manufacturing particulate energetic materials, including size reduction, crystallization, atomization, particle formation using supercritical fluids and microencapsulation, agglomeration phenomena, special considerations in mixing explosive particles and the production of nanoparticles. The second section discusses the characterization of particulate materials. Techniques and methods such as particle size analysis, morphology elucidation and the determination of chemical and thermal properties are presented. The wettability of powders and rheological behavior of suspensions and solids are also considered. Furthermore, methods of determining the performance of particular energetic materials are described. Each chapter deals with fundamentals and application possibilities of the various methods presented, with particular emphasis on issues applicable to particulate energetic materials. The book is thus equally relevant for chemists, physicists, material scientists, chemical and mechanical engineers and anyone interested or engaged in particle processing and characterization technologies.
Segregation in Vibrated Granular Systems
Title | Segregation in Vibrated Granular Systems PDF eBook |
Author | Anthony D. Rosato |
Publisher | Academic Press |
Pages | 320 |
Release | 2020-06-05 |
Genre | Technology & Engineering |
ISBN | 0128142006 |
Segregation in Vibrated Granular Systems explains the individual mechanisms that influence the segregation of granular media under vibration, along with their interactions. Drawing on research from a wide range of academic disciplines, the book focuses on vibrated granular systems that are used in industry, providing a guide that will solve practical problems and help researchers. The applications of vibration-based segregation in industries, including pharmaceuticals, mining, food and chemical processing are all investigated with appropriate examples. In addition, relevant theory behind the behavior of granular media and segregation processes is explained, along with investigations of the technologies and techniques used. - Analyzes all phenomena involved in the vibration-based segregation of bulk solids, including those relating to size, material properties and shape - Explores how different segregation mechanisms interact - Compares different technologies for investigating granular media, including PIV, MRI and X-ray tomography - Explains how to use computational techniques to model the behavior of granular media, including DM, CFD and FEM
Particle Separation Techniques
Title | Particle Separation Techniques PDF eBook |
Author | |
Publisher | Elsevier |
Pages | 770 |
Release | 2022-07-22 |
Genre | Science |
ISBN | 0323854877 |
Particle Separation Techniques: Fundamentals, Instrumentation, and Selected Applications presents the latest research in the field of particle separation methods. This edited book authored by subject specialists is logically organized in sections, grouping the separation techniques according to their preparative or analytical purposes and the particle type. Along with the traditional and classical separation methods suitable for micronic particles, an update survey of techniques appropriate for nanoparticle characterization is presented. This book fills the gap in the literature of particle suspension analysis of a synthetic but comprehensive manual, helping the reader to identify and apply selected techniques.It provides an overview of the techniques available to a reader who is not an expert on particle separation yet about to enter the field, design an experiment, or buy an instrument for his/her new lab. - Presents a resource that is ideal for anyone preparing samples across a variety of fields, including pharmaceuticals, food science, pollution analysis and control, agricultural products, and more - Includes real case examples discussed by leading experts in the field - Provides chapters that contain a unique, common table that summarizes points-of-strength and the weaknesses of each technique